International Space Station (ISS) Orbital Debris Collision Avoidance Process

Presented by:
James S. Cooney
IMOC II

October 2016
Program Description

• Risk of orbital debris
• History of NASA orbital debris collision avoidance process prior to the ISS
• Current NASA orbital debris collision avoidance process for ISS
Business Problem – Risk of Orbital Debris

- Orbital debris presents one of the highest risks to the ISS
 - ISS is one of approximately 23,000 objects currently tracked by the Space Surveillance Network (SSN)
 - New objects enter the catalog (launches, debris generating events, deploys)
 - Old objects leave the catalog (directed deorbit, natural decay)
 - Debris has been collecting since the early space age
 - Oldest satellite in the catalog is over 60 years old
 - Collision between one of these objects and the ISS could be catastrophic
 - The joint American and Russian flight control teams have been prepared to maneuver the ISS out of the way should the threat of a collision trigger a certain threshold since the launch of the first ISS module
Technology Solution – Early DAM Process Pre ISS

- Pre-Challenger - little thought given to orbital debris
- Post-Challenger - refocused attention on flight safety
- A process was created to limit risk to Space Shuttles from orbital debris
- A box, centered on the Shuttle was defined, such that predicted violations by a cataloged object could result in a maneuver
 - Maneuvers not likely
 - low catalog count, Shuttle maneuverability, short duration missions
 - No maneuvers and few notifications prior to ISS related missions
• ISS’s long duration, continuous space operations demanded more focus on debris
• The Shuttle “shoebox” method was found to be inappropriate
 – Inconsistent with potential ISS and debris position uncertainties
 – Statistically inefficient: too many false positives and/or negatives
 – Predicted high debris avoidance maneuver rate
 – ISS limited maneuverability
• A strict probability based method was investigated
 – Maneuvers based on risk of collision only
 – Screening volume and maneuver thresholds efficiently chosen to maximize protection while minimizing maneuver rate
 – But ... requires trajectory position uncertainties for debris and ISS
 – ISS need for high quality state uncertainty information drove joint NASA/USAF Space Command improvements now used by many US Government missions as well as a host of current commercial and foreign satellite owner/operators
Technology Solution – Current ISS DAM Process

• Propulsion Capability
 – All core propulsive capability is performed by the Russian segment controlled by Mission Control Center – Moscow (MCC-M)

• DAM ΔV
 – Typically ≤1m/s

• DAM propulsion source options
 – Progress resupply vehicle
 – Service Module (SM)

• DAM attitude
 – Dedicated attitude maneuver
 – Torque Equilibrium Attitude (TEA)
Technology Solution – Current ISS DAM Process

• Identify Risk
 – Personnel at the Joint Space Operations Center (JSpOC), located at Vandenberg Air Force Base, maintains a catalog of objects in orbit based on radar tracking
 – Screens the ISS trajectory against all other objects in the catalog three times per day
 – Notifies the ISS Trajectory Operations and Planning Officer (TOPO) if anything is predicted to pass within a \(\pm 2 \) km (local vertical) \(\times 25 \) km \(\times 25 \) km (local horizontal) volume within the next 72 hours
 – TOPO uses data from JSpOC to compute the probability of collision \((P_c) \)
 – Based on a set of criteria, TOPO notifies flight control teams in Houston and Moscow of the potential collision hazard
 ▪ Time of Closest Approach (TCA) \(\leq 48 \) hours
 ▪ Local vertical miss \(\leq 0.5 \) km or \(P_c \geq 1E-06 \) (1 in 1,000,000)
Technology Solution – Current ISS DAM Process

- When do you need to start DAM planning?
- How long can you wait before required to make the Go/No-Go decision?
- Hurricane Ike example below (September 2008)

Hurricane Ike
September 12, 2008
1 AM CDT Friday
NWS TPC/Direct Hurricane Center
Intermediate Advisory A

Max Sustained Wind: 100 mph
Current Movement WNW at 12 mph
Current Center Location: 28.4 W, 84.4 N

Landfall - 48 hours

Landfall - 24 hours

Landfall - 5 hours
Technology Solution – Current ISS DAM Process

• Maneuver Decision
 – TOPO continues to refine P_c as new tracking information arrives on both ISS and threat object
 – TOPO monitors trends in orbit determination, covariance behavior, miss distance, and P_c
 – Flight Rules govern when a DAM should be performed to minimize risk of collision
 ▪ P_c threshold to maneuver depends on ISS activities underway or planned in near future
 ▪ Flight Rules dictate the exceptions to perform a DAM
 – Example – inbound crewed Soyuz has launched requires higher P_c to warrant a DAM
 ▪ Action thresholds:
 – **Black** $P_c \geq 1.0 \times 10^{-2}$ (1 in 100)
 – **Red** $P_c \geq 1.0 \times 10^{-4}$ (1 in 10,000)
 – **Yellow** $P_c \geq 1.0 \times 10^{-5}$ (1 in 100,000)
 – **Green** $P_c < 1.0 \times 10^{-5}$ (no action taken)
Technology Solution – Current ISS DAM Process

- Maneuver Execution – Legacy Debris Avoidance Maneuver (DAM)
 - Dedicated command script (cyclogram) built by Moscow flight controllers uplinked to ISS
 - Pros:
 - Custom ΔV within vehicle capability – useful if eliminating near-term planned reboost
 - ISS can maneuver from any attitude to the DAM attitude LVLH YPR 0,0,0 or 180,0,0 deg
 - Cons:
 - Requires approximately 24-hours notice due to requirements to run on dedicated test stand
 - Late-notice conjunctions with high risk
 - Crew must shelter-in-place inside Soyuz
 - Risk of debris not always known well at 24-hour decision point
 - Unused work - DAM planning which is ultimately canceled once risk decreased below action thresholds
Technology Solution – Current ISS DAM Process

- Maneuver Execution – Pre-determined Debris Avoidance Maneuver (PDAM)
 - New operation late 2012 and primary method for ISS DAM
 - Pre-canned cyclogram executed by MCC-M or the crew 1 hour before the PDAM ignition
 - Normally, ignition occurs ~2 hr 20 min prior to closest approach
 - ΔV options (expanded from original 0.5 m/s only option)
 - 0.3, 0.5, 0.7, 1.0 m/s using aft engines (Progress, Service Module)
 - 0.3, 0.5 m/s using Progress docked to DC1-nadir port
 - PDAM can be performed from either LVLH YPR 0,0,0 or 180,0,0 deg attitude
 - Pros
 - Decision point to perform maneuver as late as 5 hr 20 min prior to closest approach
 - Long pole is getting ISS US systems configured for reboost (appendages in position and power down, if required)
 - Reduced unused work
 - Reduced chance of ISS crew needing to shelter-in-place for high-risk conjunctions
 - Cons
 - ΔV limited to discrete options
 - ISS must be near LVLH YPR 0,0,0 or 180,0,0 attitude for PDAM cyclogram to initiate
Future Roadmap

• PDAM Enhancements in work
 – Later PDAM options
 ▪ Houston and Moscow flight control team personnel working together to allow PDAM to occur NLT 30 minutes prior to closest approach
 ▪ Allows planning process to start NLT 3hr 30 min prior to closest approach
 – ISS maneuvers from any attitude to preferred PDAM attitude
 ▪ Currently, ISS must be near either the LVLH YPR 0,0,0 deg or 180,0,0 deg attitude to initiate PDAM
 ▪ ISS may not be near either option for PDAM initiation
 ▪ Best PDAM attitude may the option opposite of current operations
 – Example - retrograde PDAM may be preferable in some circumstances
James S. Cooney (Jim)
Email: jscooney@sgt-inc.com or james.s.cooney@nasa.gov
Phone: (281)-483-2102