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Introduction

• Background on Planetary Protection 

– Derived requirement for Thermal Protection System (TPS) reliability

– Context on TPS reliability for other human and robotic missions

• Brief Review of Mars Sample Return Studies

– Drivers for TPS reliability

– Opportunities for reliability improvement

• Emerging new TPS technologies 

– Impact on reliability

• Conclusions
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Background on Planetary Protection Requirements 

and the Grand Challenge
• NASA Policy Directive 8020.7G requires compliance with 1967 UN Treaty on Outer Space Article 

IX, which states:

• NASA Procedural Requirement 8020.12 (Planetary Protection Provisions for Robotic 
Extraterrestrial Missions) is derived from Committee on Space Research (COSPAR) Planetary 
Protection Policy

– Sample return from Mars and other water worlds: Category V “Restricted Earth Return”

• Highest degree of concern is expressed by the “absolute prohibition of destructive impact 
upon return, the need for containment throughout the return phase ….” 

– No numeric reliability allocations are provided

– Both ESA and NASA have defined design guidelines for mission studies in the recent past: 

• JPL D-31974: “probability that sample containment not assured (CNA) < 1 e-6”

• Planetary Protection for Mars Sample Return (Conley, Kminek, 2011) “Guidance: Probability of 
uncontained release of particle larger than 10 nanometers into Earth environment < 1e-6”

• Reliability allocation to subsystems is function of mission architecture

• EEV failure during correctly targeted entry < 4.0x10-7 (Gershman, 2005)

• TPS for single string EEV  < 2.5x10-7 (Preliminary PRA, Fragola 2003)
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EEV and TPS need to be extremely robust against all possible 
failure modes in the mission architecture 



Orion Post- PDR ISS Lunar

Requirement: Loss of Crew 1/290 1/200

TPS Allocation 1/5600 1/2100
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• Waiver required for EFT-1 test flight, due to negative structural margins against cracking 

of Avcoat ablator (Vander Kam, Gage) 
• PRA estimate for structural failure due to TPS bondline overtemperature ~1/160,000 (6.25e-6)

Orion Crew Vehicle Reliability allocations

From: (AIAA 2011-422) 

• Shuttle  Analysis of data from successful flights (did not include consideration of off-nominal TPS 

states) estimated TPS reliability  0f 0.999999 ( or failure < 1.0x10-6)

– Columbia accident highlighted need for consideration of damage due to debris impact

• Robotic missions (No known mission failures due to TPS failure) (most not instrumented)

– Recession data for Galileo indicated near failure at shoulder

– MSL identified shear-induced failure mode for SLA during ground test campaign – switch to PICA

– Root cause of Mars DS2 failure unknown, but entry failure deemed unlikely

• Need comprehensive hazard analysis

• Assess likelihood and consequence for each hazard

• Need robust performance margins for all failure modes 
• Ground test to failure to establish performance limits

TPS Reliability for other NASA missions



Mars Sample Return and EEV – Past, Present and Future

• EEV design (2005) assumption that passive subsystems maximize reliability

• EEV design is monostable, chuteless and  impact  tolerant

• Carbon phenolic (CP) for the heat-shield 

– DoD flight rate success for CP use in ballistic missiles

• Micro-meteor and Orbital Debris impact – Recognized but not addressed
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• MSR is a Campaign  (3- phase reference architecture)

– Mars 2020 (first leg is to cache sample) 

– Next two legs neither fully defined or committed by NASA

• Direct entry with EEV, or

• Integrated Human and Robotic Mars Campaign is an option

– Lunar sortie using Orion (Human assisted MSR) (Gershman, 
2015)

– Mission reliability may be improved with redundancy and 
active failure mitigation

• Other avenues - robotic sortie from earth-lunar orbit?

Figure Credit:  Scientific American 

Mission options for MSR likely applicable for Enceladus/Europa SR in the longer term.
• EEV design, once proven for MSR, will be adopted for other Sample return missions
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– Design is based on Pioneer-Venus and Galileo Probes

– Two types of CP needed for blunt body 

• Chop Molded and Tape Wrapped

• Manufacturing and failure modes are different for the two

• DoD uses only tape wrapped on slender body missiles

– Chop-molded is the weakest link

• Four Venus and 1 Galileo probes

– Flight data from Galileo 

– Not enough ground or flight data to establish reliability 
estimates

• Tape-wrap manufacturing and use for DoD

– Precursor Rayon and the processing of heritage have 
atrophied

• NASA obtained and processed the heritage rayon for MSR 
~(2003 -2006)

• Challenge is how to establish reliability for CP for MSR with 
limited quantity of carbonized rayon in hand

– Capability including failure modes vs flight environment 

MSR EEV carbon phenolic reliability argument is based on DoD’s use on ballistic missiles

P-V Probe



MMOD Risk Evaluation (2013)
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“Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle,” 

E. Christiansen, J. L. Hyde, M.D. Bjorkman, K. D. Hoffman, et al. NASA TM 2013-217381, 2013

• Risk from Orbital Debris alone exceeds entire TPS allocation

• MMOD “garage” on spacecraft does not adequately address 

MMOD risk

• Dedicated MMOD shield carried to Entry Interface must separate 

reliably

• TPS material that is more robust to MMOD is needed

Alternate to Garage (Corillis)



Emerging New Technologies, Materials and Capabilities
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Emerging TPS Technology Capability: 

3-D WOVEN TPS
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• 3-D Woven TPS is a family and not a single TPS.

– Automated processes – better quality control 

– weaving/resin infusion allows multi-layer and multi-
functional material development ( 3-D MAT & HEEET) 

• HEEET is targeting Venus and Saturn

– very efficient compared to CP ( ~50% of the mass)

• Acreage panels of HEEET

– very robust at extreme conditions

– no failures observed  in testing across the board

– Tested at ( 8000 W/cm2 laser testing, combined 7000 
W/cm2 and 6 atm pressure,  2000 W/cm2 and 20 atm. 
Arc jet testing) compared with MSR EEV peak 
conditions (< 2000 W/cm2 and < 0.5 atm) 

• HEEET acreage and carbon phenolics have been tested 
side-by-side at where CP exhibits spallation and other 
known failure modes

• 3-D Woven could be 

– Optimized for heatshield and backshell

– Can achieve both efficiency and robustness

– more tolerant of MMOD (not tested) due to multilayer



MMOD Tolerant Design - Emerging  Capability

- Testing and Analysis of TPS with MMOD Impact for MMOD Impact Tolerant Design

• MMOD impact tolerant design:

– Evaluate material behavior via testing  by MMOD testing followed by arc jet 
testing for hole growth 

– Shuttle Orbiter and Orion TPS followed this route 

– Physics based impact and hole growth tools have been validated with data have 
been uses to assess the MMOD risk 

– Example shown below for Carbon-Carbon
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From:  “Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials,”P. Agrawal, M. Munk and L.Glabb, 

AIAA Paper  2013-2903, presented at the 44th AIAA Thermosphysics Conference, June 24-27, San Diego, CA.



Emerging New Materials for  MMOD Protection 

Metallic-glasses: 
• Offer a unique combination of high-hardness, 

high-strength, low-melting temperatures (for 
shield vaporization) 

• Limited hypervelocity studies on metallic glasses 
as potential spacecraft shielding have provided 
important data about which features of these 
novel materials.  

– When tested under identical conditions with a 
baseline Whipple shield similar to what is 
currently used on the ISS, a shield with 
intermediate layers of metallic glass passed the 
test while the baseline sample did not. 
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• Iron-based bulk metallic glasses (BMG), or Amorphous steel, new materials that are under 

development are affordable to manufacture, incredibly hard, but at the same time, not brittle. 

• Work on the steel alloy, named SAM2X5-630, is the first to investigate how amorphous steels 

respond to shock

Gauri R. Khanolkar et al., “Shock Wave Response of Ironbased In Situ Metallic Glass Matrix Composites,” Scientific Report 

(http://www.nature.com/articles/srep22568) 6, article number: 22568 (2 March 2016) (doi:10.1038/srep22568)

“Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple 

Shield,” D.C. Hofmann, L. Hamill, E. Christianson, and S, Nutt, Adv. 

Engrg. Matls. (2015) 1-10 DOI 

http://dx.doi.org/10.1002/adem.201400518

http://dx.doi.org/10.1002/adem.201400518
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Reliability – “Devil is in the Tail” 
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Failure occurs in instances when applied load exceeds limit 
load.  This area is given by the index of reliability.
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Mission A

To achieve higher reliability, increase the mean differences 
and/or decrease the variance 

• Demonstrating Reliability /Robustness is the overlap between applied load vs limit 
strength – the overlap of the tail

• In order to define the overlap of the two tails

– Challenge:  off-nominal design loads along with precursor events that lead to failure due to 
environment vs variability that lead to strength variations 

– Things such  as manufactured material property variability, performance variability (both nominal 
and off-nominal), acceptance spec and verification for variance, etc.



How do we tackle the grand challenge? (Earth Entry Vehicle DDT&E and 

Verification for Mars/Enceladus/Europa Sample Return)

From: Conley, Catharine A., and Gerhard Kminek. "Planetary Protection For Mars Sample 

Return" ESA/NASA, April 29 (2013).   Recommended Approach: 

To meet planetary protection requirements: Risk based design, accounting also for common 

cause/mode failures, drives redundancy and diversity of system design. 

– Usually not used for robotic missions to that extent but for man-rated system;

– Need to go beyond man-rated systems because consequences go beyond occupational risk potentially 

also affecting general public. 

– Fault tree needs to become the best friend of system engineer from the very begin!
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• Demonstrating Reliability /Robustness is the 
overlap between applied load vs limit 
strength – the overlap of the tail

• In order to define the overlap of the two tails
– Challenge:  off-nominal design loads along with 

precursor events that lead to failure due to environment 
vs variability that lead to strength variations 

– Things such  as manufactured material property 
variability, performance variability (both nominal and 
off-nominal), acceptance spec and verification for 
variance, etc.



Looking to the Future

• Emerging new technologies and materials combined with lessons learned from 
Orion, and progress in testing and analysis have the potential to make MSR EEV 
much more robust – until we actively pursue we will not know how robust?

• Samples Return Missions from Mars or Enceladus or Europa likely to take a decade 
and more 

– This gives time for technology development in support of EEV

– Alternate mission/campaign architecture developments

• Two areas for investigation and investment

– Emerging 3-D Woven TPS

• Promising for improved design - reliability and performance 

– Compositional simplicity, manufacturing quality control, inherent robustness

• MMOD and impact tolerance characterization 

– Could provide secondary benefits

• Failure modes and design based on robustness

– Testing and analysis aspects, developed and in use for Orion TPS.

– MMOD

• Emerging new materials need to be assessed and integrated with EEV/Mission
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Why Mars/ Enseladus/ Europa Earth Entry Vehicle is a 

grand challenge?

• Critical planetary protection task for MSR at campaign level

• Orbiter System: Potential affected sub-systems to support safety critical functions, i.e., 

verification of biological containment system, Earth divert maneuver.

• Earth Return Capsule: Potential affected sub-system are heat shield and stability during entry.

Recommended Approach: 

• Critical design approach to meet planetary protection requirements: 

– Need to go beyond man-rated systems because consequences go beyond occupational risk 

potentially also affecting general public. 

– Risk based design, accounting also for common cause/mode failures, drives redundancy and 

diversity of system design. 

• Usually not used for robotic missions to that extent but for man-rated system;

– Fault tree needs to become the best friend of system engineer from the very begin!
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From: Conley, Catharine A., and Gerhard Kminek. "Planetary Protection For Mars Sample Return" ESA/NASA, 
April 29 (2013)

Challenge: Verification of design guideline that “probability that sample containment not 

assured (CNA) < 1 e-6,” and  for TPS, single string system, “failure < 2.5 x 10-7”


