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Background — Thermal Protection Systems Woven TPS — The Concept Arc Jet Testing (IHF at NASA Ames)

e The thermal protection system (TPS) is a barrier that protects
the space vehicle from heating during high speed atmospheric
entry

e Woven TPS leverages the mature weaving technology that has evolved from the textile Testing Conditions:
industry to design TPS with tailorable performance by varying the material composition e Cold Wall Heat Rate: ~1700 W/cm?
and properties while controlling placement of fibers within a woven structure :
e Stagnation pressure ~ 1.3 atm

e 2” dia. flat face model geometry

e Heritage TPS that protected astronauts from entry heating
when returning from the moon (Apollo) & from space station
(Shuttle) may not be adequate for missions returning from
asteroids or Mars due to higher reentry speeds

e The resulting woven TPS can be designed and tailored to perform optimally for a wide
range of entry environments without substantially changing the manufacturing and
certification process

e NASA has limited options for TPS to Venus and the Outer e The woven TPS approach utilizes commercially available weavers, using equipment, Pre test assembled model Model during test
Planets modeling and design tools to optimize the weave. This allows for the control of
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_ probes to Venus, Saturn and Uranus technology NASA will not be burdened with maintaining the capability or having to ; Post Arc Jet Recession of Fully Dense Materials (mm) Variants
- high speed sample return missions accept the risk for material restart 1 Alternative Resins e Lower recession compared to 2-
I l A D heritage like carbon phenolic
e Current TPS materials do not lend themselves to optimization e Woven TPS approach allows design and manufacture of ablative TPS materials by 0 materials
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for a particular mission thereby resulting in higher masses or specific placement of fibers in a 3D woven structure

increased risk

Alternative Resin Systems Evaluated
e (Cyanate Ester & Polyimide

e Weaving flexibility allows : 2 . e et materials had net expansion
e Lack of NASA applications drives costs of maintaining e Ability to design TPS to meet specific mission needs ) - likely due to insufficient post-
capabilities or incurring high risks of material restart e Tailoring composition by weaving together different fiber types (carbon, glass, other) . Heritage like materials cure
e Tailoring density 4 = e Subsequent testing (at a lower

heat flux) of post-cured samples

Potential Capabilities of Current Foreboby Ablative TPS Materials showed comparable ablation to
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Schematic of complex 3D weave illustrating TPS design possibilities

Tape wrapped CP Chop molded CP

* Never Demonstrated

Representative 3-D Woven TPS Materials Post Test

Heritage Like 2-D Carbon Phenolic (CP)
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Woven TPS — Tailorable Manufacturing
e Pioneer Venus & Galileo Jupiter probes used e Many varieties of woven TPS materials produced spanning a density range of 0.38 — 1.5 g/
2-D CP cm?
— Very robust TPS
— Made with tape-wrapped & chop-molded CP
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* 2-D exhibits ply separation in the AEDC
wedge testing
* As a 3-D material, Woven TPS is not
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