Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

Jessica J. Marquez, Ph.D. | Research Engineer | NASA Ames Research Center
Overview

• Current NASA Human Spaceflight Mission Operations
 – Mission Control Center
 – Automation & Robotics

• Planetary/Mars Human Missions & Operations
 – Game Changers
 – Avoiding Pitfalls

• Future Challenges: Automation & Robotics
 – Key future research

Credit for Images: NASA (unless otherwise stated)
CURRENT HUMAN SPACEFLIGHT MISSION OPERATIONS
International Space Station (ISS)
Basic Facts: ISS

- ~150 miles above
- Orbiting Earth every 90 min
- 8 buses wide (1 football field)

- Construction for 10 years
- Built in space by people
- Solar powered
Continuously inhabited by six international astronauts
To and From the Space Station
Mission Control Center Support

Credit (Backroom): J. Marquez
Ground-Crew Daily Operations
Frequent Resupply Spacecraft

Timelapse Video of Cygnus Release:
http://youtu.be/-dtOS-oavGg

Visiting Vehicles
Special Purpose Dexterous Manipulator (SPDM)

- **Dextre (SPDM)**
 - Two, seven-jointed robotic arms.
 - Used for “outside” maintenance.
- **Choreographed from ground.**
 - Designed & implemented knowing that timelines would be excessive and beyond available crew resources.
 - Uses automated sequences commands.
 - Has limited ability to respond to real-time anomalies, requiring day/s to re-plan.

BEYOND LOW EARTH ORBIT
How will human spaceflight operations evolve?
Missions will be more complex
Many required space assets

• Before ever launching people
 – Launching space assets
 – In-situ propellant generator
 – Ascent vehicle
 – Surface habitat
 – Robots
 – Power supply
 – Communication Infrastructure

• Sending astronauts
 – Spacecraft to launch from Earth
 – On-orbit transit spaceship
 – Descent vehicle
 – Mars-orbiting spacecraft
 – Spacesuits
 – Rovers
 – Spacecraft to return to Earth
Communication Limitations

~ 4 – 24 min one-way latency when Sun not in the way!
Limited Data Bandwidth

Deep Space Network

<table>
<thead>
<tr>
<th>Location</th>
<th>VGR1</th>
<th>CHDR</th>
<th>DSN</th>
<th>GTL</th>
<th>AGE</th>
<th>DAWN</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADRID</td>
<td>63</td>
<td>65</td>
<td>54</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 4, 1:26 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLDSTONE</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 3, 4:26 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANBERRA</td>
<td>43</td>
<td>45</td>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 4, 11:26 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credits: NASA JPL
What does the future hold?

• Game-changers:
 – Fewer crewmembers
 – Farther away destinations
 – Longer duration missions
 – Variant, intermittent communication delays
 – Crew autonomy
 – Less ground support

Future missions

More automation & robotics
Introducing new automation/robotics is not as easy or simple as it sounds.
Fitt’s List

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Machine</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>Superior</td>
<td>Comparatively slow</td>
</tr>
<tr>
<td>Power output</td>
<td>Superior in level in consistency</td>
<td>Comparatively weak</td>
</tr>
<tr>
<td>Consistency</td>
<td>Ideal for consistent, repetitive action</td>
<td>Unreliable, learning & fatigue a factor</td>
</tr>
<tr>
<td>Information Capacity</td>
<td>Multi-channel</td>
<td>Primarily single channel</td>
</tr>
<tr>
<td>Memory</td>
<td>Ideal for literal reproduction, access restricted and formal</td>
<td>Better for principles & strategies, access versatile & innovative</td>
</tr>
<tr>
<td>Reasoning Computation</td>
<td>Deductive, tedious to program, fast & accurate, poor error correction</td>
<td>Inductive, easier to program, slow, accurate, good error correction</td>
</tr>
<tr>
<td>Sensing</td>
<td>Good at quantitative assessment, poor at pattern recognition</td>
<td>Wide ranges, multi-function, judgment</td>
</tr>
<tr>
<td>Perceiving</td>
<td>Copes with variation poorly, susceptible to noise</td>
<td>Copes with variation better, susceptible to noise</td>
</tr>
</tbody>
</table>

Hollnagel, 2000
Benefits and Consequences of Automation & Robotics

Benefits:
- Increased capabilities
- Increased efficiency
- Lower workload

Consequences:
- Changing nature of work
- Unexpected vulnerabilities

Applications:
- Aeronautics
- Military
- Nuclear Power
- Space
Evidence from Research

What We Imagine

Reality Check

- Using Automation may lead to:
 - Inability to maintain mode awareness
 - Decreased situation awareness
 - Mode-related errors
 - Skill degradation
 - Inappropriate knowledge acquisition
 - Lack of trust (disuse of automation)
 - Complacency and system overreliance
 - Errors of omission and commission
 - Decision/automation bias

Credit: Marvel Studios, Iron Man & The Avengers
No Magic Bullet/Solution

• “New technology does not remove human error. It changes it.” (Dekker, 2006)

• Automation is only as good as we build it.
 – It inherently is imperfect and incomplete, because our knowledge of complex, new system behavior & extraterrestrial environments is incomplete.

• Humans are often considered the primary backup.

• Balancing Act: increase needs for capabilities that automation and robotics affords while mitigating consequences.
 – Better recovery from automation failures when the level of automation during the task involved human interaction. (Endsley & Kiris, 1995)
 – Increasing amount of automation supports routine system performance and workload, but negatively affects failure system performance and situation awareness. (Onnasch et al., 2013)
What does the future hold?

Crew Autonomy

Advanced Robots

Streamline Commanding
Enabling Crew Autonomy

• How to do enable crew to work and problem-solve autonomously from ground support?

• Advanced training and procedure execution support
 – Internet of things?
 – Augmented reality?
 – Motion tracking?

• Crew self-scheduling
 – Current work, includes providing astronauts flexibility to manage own schedule.
Advanced Automation and Robotics

• How do we enable monitoring and commanding of different types of robot agents, at different distances/latencies, with varying levels of capabilities?

• Advanced Automation & Robotics must:
 – Enable safety
 – Increase capabilities
 – Increase crew efficiency

• Human Exploration Telerobotics Project: Video
Streamlining Command & Control of Space Assets

- How do we reduce the number of people required to command and control all the required space assets?

- Rovers/Landers on Mars
 - Operations are open-loop, where the human must send sequences of commands rather than act on feedback information in real-time due to the long signal time delays between Earth and Mars.

- Commands to ISS
 - Space Station is monitored & commanded by a team of flight controllers, each with their specialization.
 - Everything from power management to attitude control.
Human-Automation-Robotic Integration Challenges

- Under time-delayed, intermittent, limited bandwidth communication:
 - Tele-operations and autonomous commanding of robotic agents at variant distances
 - Supervisory control of complex, automated vehicle systems
 - Commanding variety of mixed-agents, different types of automation & robotic agents

- Enabling crew autonomy:
 - Human-robot team coordination
 - Flexible scheduling and planning
 - Training and procedure support
• Game-changers will shift the way we do future human spaceflight operations.
• NASA will have to build upon & go beyond its existing human spaceflight operational experience, which has heavily relied on ground control support.
• NASA will have to infuse existing automation/robotic technology, which need to be validated in safety-critical context.
• Future human spaceflight will be more than developing automation/robotic technology – it will have to be about integrating these technologies with people.
CONTRIBUTE TO HUMAN SPACEFLIGHT:
AUGUST 23 – 24, 2016 @ AUSTIN, TX
HTTPS://2016.SPACEAPPSCHALLENGE.ORG/

http://humanresearchroadmap.nasa.gov/evidence/reports/HARI.pdf
Robotic Arm Animation, Releasing Dragon
Mars Rover Videos

- Targeting the arm