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Atmospheric Dust
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• Estimates from optical data: 
Average dust particle in the 
Martian atmosphere: 1.5 μm  in 
diameter

• Average particle size changes with 
dust storm activity:
– 2001:  Derived particle data ranged 

from 2 to 5 μm

• Data from MI on Spirit & 
Opportunity (Landis et al 2006)
– Suspended atmospheric dust: 2-4 μm

– Settled dust uploaded by wind,
diameter: ≤ 10 μm

– Saltating particles: ≤ 80 μm

• Particle in soil (MI on Spirit on 
Scamander crater) ~ 220 μm
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Martian Dust Storm
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Dust Devils
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Martian dust devil (left) and dust devil 

tracks (below) photographed from orbit
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Opacity of the Atmosphere

• Dust density in the Martian atmosphere 
has never been measured directly, they 
can be obtained from measurements of 
the opacity of the atmosphere that have 
been taken from landers.

• Opacity is measured in terms of the 
optical depth τ, which is a measure of the 
transmission of radiation through the 
atmosphere.

• τ is given by the logarithm of the ratio of 
transmitted to incident radiant power 
through the atmosphere.

• Typical values during non-dust storm 
conditions range from 0.2 to 1.

• During local dust storm conditions 
from 1 to 6.

• Figure shows optical depths measured by 
the Mars Exploration Rovers (MER) Spirit 
and Opportunity during 5 years of their 
mission
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[*] Lemmon MT et al 2014 Dust aerosol clouds and the atmospheric optical 

depth record over 5 Mars years of the Mars Exploration Rover mission Icarus

251 96-111
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Dust Content of the Atmosphere

• Using the MER optical depth data, we can calculate the expected atmospheric dust particle density 
for different conditions. The particle density as a function of height z can be approximated from

• where N0 is the number density at the surface for an optical depth of 1 and H is the scale height, 
which has an average value of 11.1 km.

• For relatively clear atmospheric conditions, with the optical depth τ from 0.2 to 1, the average 
number of dust particles in the atmosphere near the ground (z = 0) ranges from about 5 to 24 
particles/cm3.

• For dust storm conditions, using τ = 6, the expected particle density is about 140 particles/cm3

• Typical terrestrial indoors environment (similar to a class 100,000 clean room) 100,000 particles 
of 0.5 µm and larger in diameter per ft3 of air = 3.5 particles/cm3

• Low end of the range of the atmospheric particle density during non-dust storm conditions on 
Mars.

• However, the Martian atmosphere has a density of 0.020 kg/m3 near the surface, which is about 
1.6% of the density of the terrestrial atmosphere near the surface. If we were to pump Martian 
atmospheric gas into a chamber and increase its density to match that of the Earth’s atmosphere, 
the particle concentration would increase form an average of about 11 (taking the middle of the 
range for calm conditions) to about 670 particles/cm3
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Expected Electrical Environment

• Tribocharging of particles expected to generate E-fields up to 
Paschen breakdown ~ 20 kV/m

• Terrestrial dust devils ~ >120 kV/m (Jackson & Ferrell, 2006)

• 1973: Eden and Vonnegut performed lab experiments with sand in 
Martian-like atmosphere:
– Dust particle q ~ 104 e-

– Observed glow and filamentary discharges

• Recently, we observed glow discharges with Mars simulant
– Showed alteration of known organics added to Mars simulant under 

simulated conditions

• 2001-2006: Fabian et al and Kraus et al: charging due to dust 
vertical motion; electrical discharges in atmosphere

• In dusty, turbulent Martian environment:
– E ~ 5 kV/m
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Electrical Discharges on Mars?

• Theoretical studies, laboratory, and terrestrial field experiments  atmospheric electrical 
activity on Mars (lightning or corona discharges) should be abundant

• However, years of direct observation from orbit and ground, including the recent MAVEN 
mission dedicated to the study of the Martian atmosphere, show no clear evidence of 
atmospheric electrical discharges.

• Triboelectric charging of dust grains during terrestrial dust storms or dust devils produces 
positive and negative charged grains

• On Mars, convective instabilities in the atmosphere should stratify similarly produced 
charged dust grains  lighter grains lifted to higher altitudes than more massive grains

• Since smaller particles charge negatively and larger particles charge positively, a macroscopic 
dipole moment is formed in the atmosphere that can produce an electrical discharges

• Fabian, Krauss and their collaborators demonstrated experimentally in a simulated Martian 
atmosphere that this type of dust vertical motion can generate electric fields strong enough 
for electrical discharges to occur [*].
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*Fabian A Krauss C Sickafoose A Horanyi M and Robertson S 2001 

Measurements of electrical discharges in Martian regolith simulant IEEE Trans 

Plasma Sci 29 288–291
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• Numerical models of dust electrification during Martian dust storms and dust devils predict that 
electric fields should have strengths up to the breakdown potential of carbon dioxide at the low 
atmospheric pressure of Mars

• Combined with experimental values of electron density in the Martian atmosphere, these 
models yield values of the electrical conductivity of the atmosphere that are several orders of 
magnitude higher than the values for the terrestrial atmosphere.

• Thus, charge dissipation in the Martian atmosphere would happen in seconds rather than 
minutes, as is the case for Earth

• Discharge mechanism, however, remains unknown. Whether it takes place violently (lightning) 
or gently (corona glow) is not known. No direct measurements have ever been made.

• However, there is experimental evidence for glow discharge in laboratory experiments Eden 
and Vonnegut placed sand particles in a container with carbon dioxide at pressures in the range 
of the Martian atmospheric pressure and observed a glow as well as filamentary electrical 
discharges when the container was shaken.

• Our NASA laboratory conducted similar experiments where we were able to observe a visible 
glow and show that these discharges altered several organics known to exist on Mars. 

• In contrast, a recent charging model  electric fields cannot reach levels up to breakdown 
because of charge dissipation in the saltation layer
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• Farrell W M et al 2003 A simple electrodynamic model of a dust devil Geophysical Research Letters 30 250

• Zhai Y, et al 2006 Quasielectrostatic field analysis and simulation of Martian and terrestrial dust devils J. Geophys. Res. Lett. 35 16

• Eden H F and Vonnegut B 1973 Electrical breakdown caused by dust motion in low-pressure atmospheres: Considerations for Mars Science 180 962 

• Hintze P E et al 2010 Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions Icarus 208 749-757  
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• Searches for evidence of electrostatic discharges in the Martian atmosphere have been made 
with instrumentation aboard orbiting spacecraft.

• In 2009, Ruf and collaborators claimed that they had detected non-thermal electromagnetic 
emissions during a dust storm.

• Analyses of the modes of these emissions were interpreted to be Schumann Resonances. 
Some researchers attribute the presence of these resonances to lightning discharges.

• However, subsequent observations in the same electromagnetic region found no evidence of 
Schumann Resonances during a period that included dust storms.

• Detailed studies of over 5 years of observations by the Mars Advanced Radar for Subsurface 
and Ionosphere Sounding (MARSIS) yielded no evidence of high frequency radio emissions 
that would indicate the presence of electrical discharges.

• Moreover, the connection between Schumann Resonances and lightning has not been 
established yet, with only one research effort indicating it as a possibility
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• Anderson M M et al 2012 The Allen Telescope Array search for electromagnetic 

discharges on Mars Astrophys. J. 744 15

• Ondarkova A et al 2008 Peculiar transient events in the Schumann Resonance 

band and their possible explanation J. Atmos. Sol-Terr. Phys. 70 937-946
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• A key outstanding question related to the presence of lightning and glow discharges in the 
Martian atmosphere is the rate of charge dissipation in the more conductive Martian 
atmosphere.

• Some terrestrial examples of particle charging in volcanic ash clouds have shown that they 
remain electrified long after charge should have dissipated into the atmosphere.

• A similar phenomenon could happen on Mars that may influence electrical activity. Ions and 
electrons present in the atmosphere may also be a factor in limiting the strength of the 
electric fields and the conductivity of the atmosphere

• To shed light on this phenomenon, we are conducting experiments in a partially simulated 
Martian environment to tribocharge simulant dust particles in sizes that are representative of 
those in Martian dust storms and dust devils.

• Charging rates, charge polarity distribution, and charge decay rates will be measured. These 
experiments have never been performed under simulated Martian conditions.

• The proposed experiments should allow us to examine this possibility, providing new data 
that may help improve models for discharge events on Mars
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• Delory G T 2012 Problems and new directions for electrostatics research in the context of space and planetary 

science Proc. 2012 Joint Electrostatics Conference

• Harrison R G et al 2010 Self-charging of the Eyjafjallojokull volcanic ash plume Environ. Res. Lett. 5 024004

• Jackson T L et al 2010 Martian dust devil electron avalanche process and associated electrochemistry J. 

Geophys. Res. 115 E5
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Electrostatic Precipitator

• Electrostatic Precipitator: two electrodes 
at a potential difference

• Townsend Breakdown: electron 
avalanches

• Weak E field: particles recombine

• Strong E field: avalanche region expands 
--> breakdown (Paschen)
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Stable positive corona at 2.2 kV and 150 μA on 0.64-cm 
diameter rod inside 9.6-cm diameter cylinder in 95% 
CO2/ 5% humid air at 9 mbar taken using a 50 mm lens at 
F16 with 20 s exposure. 

Same geometry just after transition from 200 μA
positive corona to an unstable streamer discharge 
(F8, 10 s). Two stationary pink streamers are 
visible below the rod, as well as the recorded 
dancing motion of a dynamic blue streamer from 
the rod to the inner cylinder.

Electrical Discharges on Mars?
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Electrical Breakdown on Mars

Paschen breakdown potentials versus pressure-distance for a Martian gas mixture (red 

squares) and for CO2 (blue triangles)

This breakdown limits potentials required for an Electrostatic Precipitator

At 5 mbar in constant E field: 

725 V for 5 mm gap

895 for 10 mm

2.8 kV for 5 cm

3.2 kV for 10 cm
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•Dust particle charging depends on pressure

•Two types: Field (Pauthenier) and Diffusion 
Charging

•Field: ions accelerated in field attach to particles 
(depends on particle diameter)

– Saturation Charge: 

•Diffusion Charging: thermal ion motion

Where c is the mean ion velocity = 362 m/s
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Continuum regime field (Pauthenier) saturation charge (dotted line) and diffusion 

charge (red line) for particles in CO2 at 9 mbars with E = 0.23 kV/cm and an 

exposure time of 10 s

• Field charging contributes more to 4-10 micrometer diameter particles

• Both mechanisms contribute to 2-4 micrometer particles normally in atmosphere
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Table 1. Corona Charging Experiments

in 5 mBar CO2.

Outer Cylinder Inner Diameter (cm) Inner rod/wire (cm) Ball Diameter (cm)

5.26 70× 10-4 0.95

5.26 100× 10-4 0.95

7.0 70× 10-4 0.95

7.0 100× 10-4 0.47, 0.95, 1.27

7.0 0.3 0 95

9.6 70× 10-4 0 95

9.6 100× 10-4 0 95
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Experimental values of the charge on 

0.47, 0.95 and 1.27 cm diameter brass 

sphere vs E

Experimental charge vs. sphere diameter 

for E fields of 0.11 and 0.24 kV/cm. Data 

taken at 5 mbar in CO2
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I-V curves for one configuration of the 

precipitator. Data taken at 5 mbar in 

pure CO2 and in a 95% CO2-5% air 

mixture, show that there is little 

difference in the I-V characteristics 

between the two environments at this 

pressure.

I-V curves for seven configurations 

of the precipitator. Data taken with 

clean electrodes and positive 

polarity at 5 mbar in CO2.
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• Particle size distribution of JSC Mars-1 simulant dust particles introduced into the chamber with 

short puffs of CO2 gas and aerosolized before falling through the precipitator with the field off

• Three, five, and ten puffs, each carrying about 2 mg of simulant dust, were supplied

• Dust was collected on silicon wafers 7 cm in diameter

• Four runs were performed with the 7.0 cm-0.3 cm rod outer-inner electrode configuration and 

one with the 7.0 cm-100 µm configuration
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Microscope images at 100× of JSC Mars-1 dust simulant particles aerosolized in 

the vacuum chamber and sent through the precipitator with the field off (left) and 

with the field on (right). The largest particles seen on the image with the field on are 

outside the range of particles expected in the Martian atmosphere.
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(Left): Clean color calibration target on Mars Exploration Rover Spirit. The target's mirror and 

the shadows cast on it by the Sun help scientists determine the degree to which dusty 

Martian skies alter the panoramic camera's perception of color. (Center): Calibration target on 

the missions’ twin rover Opportunity after 23 Martian days (sol). Right): Target after 346 sols. 
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To calculate precipitator efficiency:

• Ten CO2 puffs carrying 5 g each of <10 µm vacuum oven-dried 
simulant

• Unprecipitated simulant was collected with Whatman 542 filter paper

• Precipitated dust was picked up with 2 sheets of filter paper

• These two sets, plus a control, were burned in crucibles at 900 ℃

• Efficiency = 99%

Kennedy Space Center
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Precipitator in a Flow-Through

• A prototype precipitator with a controlled CO2 flow of 9.4 LPM at 9 mbars was 

designed and constructed.

• Particle counters provide particle counts before and after precipitation.

• Design is a 1/10 scale intended for possible demonstration on the NASA Mars 

2020 mission.

• A full scale unit, with a flow of 88 g/h or 0.74 SLPM, corresponding to 94 LPM 

at 8 mbar, will be proposed for NASA’s Mars Sample Return Mission in 2024.

Kennedy Space Center
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I-V Curves
• Current-Voltage (I-V) curves at 9 mbars 

in air and in CO2 were obtained.

• Voltage started at 100 V and increased 
by 50 V until the corona current 
reached 500 µA (higher than the 250 µA 
in previous design due to longer tube).

• We performed one single particle 
collection experiment with aerosolized 
4 µm diameter Martian simulant 
particles.

• Obtained significant counts upstream 
with essentially no counts downstream

• Laboratory move did not allow us to 
perform additional experiments

• Current proposal for Mars 2020 mission, 
if approved, will allow us to resume 
experiments.

Current-voltage curves for the precipitator 
in a flow through configuration under 9 
mbar no flow conditions

Kennedy Space Center


