Electric Potential and Electric Field Imaging with Applications

Dr. Ed Generazio
NASA Langley Research Center
Overview

• Background

• Sensor development & design issues

• Electric field measurement systems

• Application examples
Background

• NDE historically has focused technology development in propagating wave phenomena:
 • X-ray, ultrasonic, microwave, thermal, terahertz, and eddy current
 • Little attention to the field of electrostatics and emanating electric fields.
• Interest in evaluating the integrity of wire insulation in aircraft and aerospace systems
• This work is based on the original electric field sensor (e-Sensor) work disclosed by Generazio (2002).
Electric Potential and Electric Field Imaging with Applications

e-Sensor Array Based on Field Effect Transistors

- Resistance load
- FET
- Each gate (G) is a measurement electrode
- To data acquisition system
Electric Potential and Electric Field Imaging with Applications

Floating gate design
Dielectric constant, relative permittivity, ε

Electric susceptibility, $\chi = 1 - \varepsilon$

$\varepsilon = 1$ vacuum

Conductor
Electric Potential and Electric Field Imaging with Applications

Human Hands
Asbestos
Rabbit Fur
Glass, Mica
Human Hair
Nylon, Wool
Lead
Silk
Aluminum
Paper
Cotton
Steel
Wood
Amber
Hard Rubber
Mylar
Nickel, Copper
Silver, Brass
Gold, Platinum
Polyester, Celluloid
Saran Wrap
Polyurethane
Polypropylene
Vinyl, Silicon
Teflon
Silicon Rubber

POSITIVE charge

NEGATIVE charge

Triboelectric affinity
Electric Potential and Electric Field Imaging with Applications

- Low dielectric constant/Low electric susceptibility
- Non-conductor
- Neutral triboelectric affinity
Catch 22

- Want to select the best materials for constructing an electric field measurement system, however, the actual electrical properties vary or are unknown in configuration to be used.

 - Insulation on wiring
 - Wire diameters
 - Circuit elements
 - Support materials

- Don’t know actual electrical properties until tested
An Example, “e - Sensor” Antenna Configuration for Wiring Inspection

Electrical equipotential surfaces (\(V_1, V_2, V_3, V_4\)) are distorted due to damaged or aged insulation. Some antenna elements are no longer parallel to the electrical equipotential surfaces and now are exposed to an increase in potential.

The electric field, \(\mathbf{E}\), at any point is given by \(-\nabla V = \mathbf{E}\), where \(V\) is the electrical potential.
“e - Sensor” Data from Prototype

Wire passing through e - Sensor prototype

e - Sensor

e - Sensor LEDs are dimmed proportionately by the presence of the spatially varying electric potential existing around statically charged insulated wire.
Electric Potential and Electric Field Imaging with Applications

2nd Prototype
Electric Potential and Electric Field Imaging with Applications
Voltage Response from 16 e-Sensors

Dipole Rotation Rate = 120 RPM
Quasi-static Electric Field Frequency = 2 Hz

Volts

Acquisition point

Time (sec)
Electric Potential and Electric Field Imaging with Applications
Electric Potential Image of Human

Ed Generazio’s

1st electric field image of a human, 10/23/2012

Electrical potential image of a human in a uniform electric field

- First images identify rich areas of improvement.
- Imaging volumetric dielectric properties of structures
Electric Potential and Electric Field Imaging with Applications

Front Back

15.24 cm

Electric Potential

Electric Potential 3D

Electric Potential 3D 45°

b. c. d.
Electric Potential and Electric Field Imaging with Applications

Representation of Cable Showing
Cable Orientation RG-174/U 50 OHM
Cable 0.256 cm Outer Jacket
Diameter

Electrostatic potential distortion around a cable carrying no current.

Electrostatic potential distortions have extremely large spatial distributions compared to cable diameters.

The electrostatic potential ranges from -3 volts (lightest areas) to -2 volts (darkest areas).

Image of actual electrostatic potential distortion around LM324 Operational Amplifier (LM324 DIP), 10 mm x 20 mm top surface is normal to reference electric field.

Electrostatic potential distortions have extremely large spatial distributions compared to amplifier dimensions.

The electrostatic potential ranges from -3 volts (darkest areas) to -4 volts (lightest areas).

LM324 DIP OP AMP Location

100 cm

200 mm
Electric Potential and Electric Field Imaging with Applications

38 Magnet wire

Polyvinyl Chloride

Cotton

Rayon

Polyethylene

$V_0 - 0.55\, V$

$V_0 + 0.55\, V$
Electric Potential and Electric Field Imaging with Applications

As received rods

Silk cloth passed over surface

<table>
<thead>
<tr>
<th>Dielectric Constant</th>
<th>Triboelectric Affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 – 2.1</td>
<td>PTFE</td>
</tr>
<tr>
<td>2.7</td>
<td>Acrylic</td>
</tr>
<tr>
<td>1.2 – 2.1</td>
<td>Wood</td>
</tr>
<tr>
<td>3</td>
<td>Nylon</td>
</tr>
<tr>
<td>5 – 5</td>
<td>Garolite</td>
</tr>
<tr>
<td>4 – 9</td>
<td>Mica ceramic</td>
</tr>
<tr>
<td>3.8</td>
<td>Borosilicate Glass</td>
</tr>
<tr>
<td>2.8 - 4.1</td>
<td>Polyester</td>
</tr>
</tbody>
</table>

Samples are in order left to right
Electric Potential and Electric Field Imaging with Applications

EFI: New Electrostatic Eyes

PTFE Panel

Wood Frame

EFI Electrostatic Potential Image of latent charge distribution generated by triboelectrically drawing the letters "NASA" on PTFE. The EFI image is overlaid onto the area scanned.

Electric Potential

Image

PTFE, Teflon Panel
6.35 mm x 30.38 cm x 30.38 cm

The letter "N" triboelectrically hand drawn on the front (upper) and back (lower) of a PTFE panel.
Foot Prints on Static Protection Office Rug

Footfalls are outlined in dashed curves

Optical Image of Rug Surface

EFI Image (electrical potential)

Optical Image of Bottom of Right Shoe

5 minutes $\Delta V = -4.46$ Volts
Electric Potential and Electric Field Imaging with Applications

Very conservative sensitivity at 1.55mV/cm

Several orders of magnitude by FET selection, components, filtering, structural design, etc.
True Electric Potential Measurements are Made
When Sensor is in Quasi-static Motion

Sampled voltage from ephemeral sensor at equilibrium electrical potential

2.4 Hz

Trigger signal for sampling electric potential at a fixed rotational position

Sample potential at negative edges of trigger signal
Typical Measured Ephemeral Sensor Response in the Presence of a Charged Axially Symmetric Object

Non-rotating sensor

Rotating sensor
Electric Potential and Electric Field Imaging with Applications

2D EFI

[Image of circuit diagrams and equipment setup]
Individual element sensor responses due to changes in strobe circuit electrical potentials

Strobe components are activated (charged)

Strobe starts discharging (flashes)

Strobe components discharging

Measured voltage, V

Time (seconds)
Electric potential of stobe light circuit charging and discharging 6 times at 10Hz
Strobe lamp flash

Δτ = 0.060 sec
Anticipated Benefits

• NASA Programs and Commercial space industry
 • Electrostatic discharge (ESD) control requirements
 • Damaged materials characterization requirements
 • Component operations and integrity
 • Tether quality control
 • Lightening Prediction
 • Vehicle and component charging requirements
 • Design and construction of unique electronic sensors
 • Systems and human health monitoring in space.
 • Atmospheric Imaging

• The Nation
 • Medical – non-contact EKG and EMG (electromyography)
 • Intrusion detection
 • US perimeter security
 • Transportation security- personnel and baggage inspection
 • Personnel identification and access
 • Electronic signature requirements
Q & A

- Electric Field Imaging (2016) US 9279719 B2
- Quasi-Static Electric Field Generator (2016) US20160049885A1
- Solid State Ephemeral Electric Potential and Electric Filed Sensor, Serial Number: 15/177,798 (2016)

For EFI technology listing and licensing opportunities:

Jesse Midgett, Technology Transfer Specialist
J.midgett@nasa.gov
757-342-5569

https://technology.nasa.gov/patent/LAR-TOPS-116

LARC-DL-technologygateway@mail.nasa.gov