James Webb Space Telescope
Integrated Science Instrument Module
Thermal Vacuum/Thermal Balance Test Campaign
at NASA’s Goddard Space Flight Center

Stuart Glazer/NASA GSFC – JWST ISIM, OTIS Test Lead Thermal Engineer
Brian Comber/GES, Inc. – ISIM Lead Thermal Analyst

29th Space Simulation Conference, Annapolis MD
November 14-17, 2016
AGENDA

- JWST Background
- Observatory Flight Configuration
- ISIM Configuration
- JWST Facility, ISIM Element Test Program
- ISIM Cryo-Vacuum (CV) Thermal Test Objectives
- Test Complexities
- CV Test Configuration
- Special Equipment Developed for the ISIM CV Tests:
 - CV3 Test Profile
 - Test Methodology
- Key Test Results
- Lessons Learned
- Acronyms
- Acknowledgements
The James Webb Space Telescope (JWST) is a large observatory, designed as a follow-on to the Hubble Space Telescope. Its mission includes study of formation of galaxies and planets following the “Big Bang”

- Launch planned late 2018, into orbit around the second Lagrange point
- Three science instruments passively cooled to 36.5K-43K, located within the cryogenic Region 1
 - Near Infrared Spectrograph (NIRSpec), primarily sponsored by the European Space Agency (ESA) with substantial NASA contribution
 - Fine Guidance Sensor (FGS), provided by the Canadian Space Agency (CSA)
 - Near Infrared Camera (NIRCam), provided by NASA
- One science instrument actively cooled to ~6.2K, also located within Region 1
 - Mid Infrared Instrument (MIRI), jointly sponsored by ESA and the European Consortium (EC). NASA provides the cooler and supplemental hardware for MIRI. The cooler’s compressor is located in the ambient temperature spacecraft bus (designated Region 3), outside the cryogenic Region 1
 - Ambient temperature flight electronics located within Instrument Electronics Compartment (IEC), designated as Region 2
- Primary mirror made up of 18 beryllium segments, 6.5-m diameter (deployed)
- NASA’s Goddard Space Flight Center (GSFC) is mission lead, and is directly responsible for the Integrated Science Instrument Module (ISIM), including its integration and test
- Northrop Grumman Aerospace Systems (NGAS) is prime contractor, with major contributions also from Ball Aerospace Corporation (BAC).
JWST Design, Thermal Region Definition

Region 1 (~40K) – Instrument Module
- Instruments & supporting Hardware
- Complex cryogenic environment

Region 2 (~290K) – IEC & HR
- ISIM Electronics Compartment: Instrument ICE & FPE electronics
- Traditional Thermal Integration of electronic components within IEC

Harness Radiator:
- System for cooling harnessing to reduce parasitics entering Region 1
- IEC & HR viewed as “independent” system for purposes of this review

Region 3 (~300K) – S/C Bus
- Cryocooler Compressor
- Cryocooler Electronics (CCE)
- ICDH
- Traditional thermal integration of electronic components to NGAS Bus

Items in Grey are responsibility of Prime Contractor, NGAS
NGAS responsible for integration
Major Design Elements of the ISIM

- NIRCam
- Purge Lines and Panel
- MIRI
- IEC Radiator
- Baffles
- Harness Radiator
- Harnesses
- NIRCam
- Thermal Strap
- FGS
- ISIM Structure
- NIRSpec
- Kinematic Mount
JWST ISIM Element / Facility Test Program

Test Items – Test Exposure of Items in SES Testing

<table>
<thead>
<tr>
<th>Tests</th>
<th>He Shroud Acceptance Test (-03)</th>
<th>Chamber Certification Test (-01)</th>
<th>ISIM Structure Cryoset Test</th>
<th>ISIM Structure Cryo-Proof Test</th>
<th>OSIM Cryo-Cal Test 1</th>
<th>OSIM Cryo-Cal Test 2</th>
<th>ISIM Element Cryo-Vacuum Tests (3 tests completed)</th>
</tr>
</thead>
</table>

|---------------------------|--------------------------------|---------------------------------|-----------------------------|---------------------------------|----------------------|----------------------|------------------------|--------------------------|----------------------|----------------------|--|

| Cycles | 1 cycle to 15K B/O to 70C | 1 cycle to 15K B/O to 50C | 1 cycle to 28K B/O to 30K | 1 cycle to 39K B/O to 50C | 1 cycle to 28K B/O to 40C | 1 cycle to 30K B/O to 100K | 1 cycle to 30K (BIA) | 1 cycle of OSIM to 100K | CV1: 1 cycle to 43K | CV2: 1 cycle to 37K + 43K | CV3: 1 cycle to 37K + 43K |

* - caveat; Fabreeka's were not energized in these tests
- caveat; NIRSpec, NIRCam are not in CV1, and Cryo Cooler CHA ETU used in CV 1 & 2 tests.
Key ISIM Element Cryo-Vacuum
Thermal Test Objectives

- Cryo-Vacuum (CV) tests at GSFC were designed to verify instrument and ISIM optical, electronic, software, and thermal requirements.
- Thermal test objectives of the CV-3 test included:
 - Obtain sufficient data for ISIM detailed thermal model correlation
 - Verify workmanship of Science Instrument (SI) heat straps:
 - Measure thermal conductances, verify they meet requirements
 - Measure temperatures at strap – SI interfaces, verify they meet requirements
 - Verify workmanship of 77/93 flight housekeeping sensors, using the flight ISIM Remote Services Unit (IRSU) and spacecraft simulator
 - Verify NIRSpec, NIRSpec FPA/ASIC, NIRCam, FGS power dissipation in Region 1 meets requirements
 - Verify MIRI optics module (OM) temperature at kinematic mounts (KMs), harness attachment points meets requirements
 - Verify temperatures, gradients at all other SI KMs meet requirements
 - Verify electrical harness heat loads to ISIM from all harnesses meet requirement
 - Verify heat loads through heat straps to all five SI radiators meet high level requirements
 - Verify total heat flow from the harness radiator to the structure meets requirements
 - Measure Cooler heat lift verification of 6K stage
 - Measure MIRI shield heat load
 - Demonstrate functionality of Cooler line decontamination
 - Qualify electronics boxes over operational temperature range (thermal cycling)
 - Observe thermal effect on ISIM from non-nominal conditions and thermal transients:
 - NIRSpec Microshutter anneal
 - Cooler line decontamination
Some Considerations Resulting in Test Complexity

- In transient cool-down, Warmup:
 - Large numbers of constraints and limitations defined:
 - For water, molecular contamination avoidance as instruments passed through specific temperature ranges. These included keeping critical surfaces of SI’s within ~5K of each other when water can be released (~140K -170K) during cool-down;
 - Complex strategies developed to control timing of water release from shrouds and cold GSE during warmup, and also nitrogen release (since chamber He shroud and other GSE was operated < 27K). These included operational constraints to prevent arcing by high voltage electronics controlling selected flight heaters during pressure increases caused by water and/or nitrogen release
 - For flight hardware and GSE gradient control
 - Rate limitations on specific elements to control stress due to differential contraction
 - Need to mimic heater algorithms to be used during flight cool-down
 - Control of active, passive cool-down of flight components, GSE with vastly different heat capacities, and in different temperature ranges
- In steady state cryogenic testing / thermal balances:
 - Different temperature ranges and stabilities required (NIR instruments ~40K, MIRI ~6.2K, OSIM ~ 100K, Flight electronics boxes and IEC ~ 278K, He shrouds ~18K)
 - Ability to adjust instrument temperatures as needed during testing with conductive, radiative boundaries, accommodate instrument heat loads without flight radiators
 - Heat loads to radiators are 5 mW < Q < 200 mW, leading to need for measurement accuracy of ~ 2 mW in test
- Overall test duration of 108 days actual
ISIM CV Test Configuration: Overview

ISIM Payload, GSE, Plus Optical Simulator (OSIM), inside GSFC 8.2m dia., 12.2 m tall Space Environmental Simulator (SES)

General Temperature Ranges Held in ISIM Cryo-Vacuum Testing
ISIM CV Test Configuration: Radiative Boundary

Surrogate Thermal Management System (STMS), provides 12 individually controlled radiative thermal boundaries (zones) around the science instruments (Region 1) to provide thermal gradients similar to those expected in flight.

Individual STMS zones plumbed with GHe lines for rapid cool-down, warm-up. GHe flow stopped during steady state testing, temperature controlled to within +/- 50 mK of specified temperature using heaters, controllers.

“Q-meters” (not shown here) attach to ends of flight heat straps where flight radiators would be located, providing constant temperature conductive thermal boundaries to each instrument, while simultaneously measuring heat flow.
ISIM CV Test Configuration: He Flow Zones

- Helium Refrigerator System in SES has 1000W cooling capacity at 20K
- GHe Flow is divided into 10 zones, adjustable from 0% to 100% open in real time
- Primary He shroud uses 5 of those zones, the remainder are assigned to cool key GSE in a manner to facilitate and enhance transient cool-down, warmup, and steady state boundary thermal control
ISIM CV Test Special Equipment: Q-meter

Photo of Q-meter during Initial Assembly

Q-meter Components

Typical mounting location of Q-meters in test (to heat strap at radiator interfaces), and location of trim heaters (on heat strap at instrument interfaces)
ISIM CV Test Special Equipment: Fusion Computer System

- CV tests needed to continually monitor > 1700 sensors, other parameters;
 - Flight sensors, voltages, instrument status, etc. read through S/C simulator and displayed on Eclipse data system;
 - Facility, other GSE temperatures, pressure read out and displayed by TVDS system;
 - Special GSE developed for CV tests: Q-meter instrumentation, harness radiator control and instrumentation read and displayed on local displays
 - Fusion Computer system developed in Excel, to read all data every 2 minutes, monitor compliance with over 100 constraints and limitations pertaining to gradients, rates, and relative temperatures, and if needed, recommend mitigations. The system is extremely flexible and powerful, providing capabilities not available with the older TVDS facility test software. The Fusion software permits plotting in real time, and allows remote monitoring (with VPN).
ISIM CV Test Special Equipment: Fusion Computer System

Typical display of part of 1 Fusion system page. Flight and GSE rates, gradients, relative temperatures (min/max) are shown in real time. Control logic and limits can be changed during the test with proper authority. Sensors lost can be deleted from equations in real time.
ISIM CV3 Test Profile

- IEC Cycles
- IEC Shroud Water Burp
- CCH Hold, then Walk-Down
- MSA Anneal
- MIRI Line Decontam
- Transition, Cold to Warm Balance
- Helium Shroud N2 Burp

Legend:
- ISIM Avg
- ISIM Tube Max
- ISIM Gradient
- Helium Shroud
- NIRSpec Bench
- NIRCam Bench
- NIRCam POM
- FGS Bench
- MIRI Bench
- MIRI Shield
- OSIM PM
- OSIM PM Gradient
- IEC Pln Avg
ISIM CV3 Test Methodology

• Complex, highly choreographed cool-down relied on extremely detailed thermal modeling of flight payload, test GSE, chamber, to comply with all constraints and limitations and cool-down objectives.

• At steady state, ISIM radiative thermal boundaries (STMS panels), and ISIM conductive boundaries set to flight predicted temperatures for cold, warm conditions. Q-meters (radiator surrogate) set to temperatures required by instruments in cold, warm flight.

• Heat strap conductances, instrument power dissipation determined by set of 3 balances (cold) and 2 balances (warm), which can be done instrument by instrument when convenient:
 – 1. nominal quiescent SI operation, measure Q-meter heat load
 – 2. add known amount of heat with trim heater at SI interface, measure Q-meter heat load. Calculate fraction of heat that transfers to the Q-meter (usually 95-100%, by design)
 – 3. turn off trim heater and instrument.

• Heat strap conductance = Difference between Q-meter readings of balance #1 and 2, divided by SI temperature rise

• Instrument dissipation = Difference between Q-meter readings of balance #1 and 3, divided by fraction of known heat that transfers to the Q-meter

• MIRI heat load to cooler determined with SI off, taking series of steady state balances measuring enthalpy of cooling fluid versus heat load, then extrapolating to determine load with no added heat load.

• Harness heat loads to ISIM measured using GSE embedded sensors within harness bundles, with conductance versus temperature having been measured in test facility pre-test.

• Q-meters also used to determine heat loads during selected events, such as NIRSpec microshutter anneal, and MIRI cooler line decontamination event.

• Complex, highly choreographed warmup relied on extremely detailed thermal modeling of flight payload, test GSE, chamber, to comply with all constraints and limitations and warmup objectives. Pressure rise, coinciding with release of water, nitrogen, carefully planned.
Heat Strap Thermal Conductances

Electrical Harness Heat Loads to ISIM (Structure plus Instruments)

Instrument Nominal Power Dissipation

Workmanship: 1 of 77 IRSU sensors found to be intermittent, was replaced post CV3 test.
Testing Lessons Learned

- High accuracy heat flow measurement is extremely valuable in hardware design validation, requirement verification. Pay special attention to design detail, careful pre-test calibration. Use instrumentation that provides alternating current to read sensors, to eliminate Seebeck effects.
- Use/develop test monitoring system so all flight and test sensors and heaters, are monitored, and Constraints and Limitations can be evaluated in real time, and plots/graphs can be made quickly.
- Perform pre-test checkout of key facilities hardware (He refrigerator, vacuum pumps, chamber shrouds, data Acquisition System), and all temperature sensors and measurement systems. Verify that all sensors with individual calibration curves (by serial number) have them input into the appropriate instrumentation, and check all setpoints are set correctly. Recommend use of Cernox sensors for critical temperature measurements, as uniqueness of resistance versus temperature calibration permits quick pre-test check at ambient that correct calibration curves are used.
- Prepare pre-test temperature and heat load predictions and clear success criteria.
- Develop a large, well trained staff for thermal shift support, flexible enough to provide support in the event of illnesses, bad weather, and other emergencies. Identify test “floaters” (experts on various test aspects) in combination with regularly scheduled thermal test support to provide 24/7 continuity. Conduct multiple comprehensive pre-test training sessions, with a written curriculum.
- Make thermal test program flexible and robust, to accommodate short notice changes to testing schedule.
- Prepare pre-test plans, procedures, including safing of the payload, to deal with unexpected problems.
- Have the thermal test modeler/analyst involved during integration, and make test configuration inspections to confirm that models accurately represent the test.
- Input to overall test planning to prioritize thermal tests, participate in key test decision points to proceed.
- Coordinate with contamination control personnel to verify test procedures meet cleanliness requirements.
- Have available redundant key GSE units (computers, controllers, temperature measurement instrumentation, etc).
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuits</td>
</tr>
<tr>
<td>BAC</td>
<td>Ball Aerospace Corporation</td>
</tr>
<tr>
<td>BIA</td>
<td>Beam Image Analyzer</td>
</tr>
<tr>
<td>BSF</td>
<td>Backplane Support Fixture</td>
</tr>
<tr>
<td>CCE</td>
<td>Cryocooler Electronics</td>
</tr>
<tr>
<td>CCH</td>
<td>Contamination Control Heater</td>
</tr>
<tr>
<td>CSA</td>
<td>Canadian Space Agency</td>
</tr>
<tr>
<td>CV</td>
<td>Cryo-Vacuum</td>
</tr>
<tr>
<td>DM</td>
<td>Development Model</td>
</tr>
<tr>
<td>DSR</td>
<td>Deep Space Radiator</td>
</tr>
<tr>
<td>EC</td>
<td>European Consortium</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ETU</td>
<td>Engineering Test Unit</td>
</tr>
<tr>
<td>FGS</td>
<td>Fine Guidance Sensor</td>
</tr>
<tr>
<td>FM</td>
<td>Flight Model</td>
</tr>
<tr>
<td>FPA</td>
<td>Focal Plane Arrays</td>
</tr>
<tr>
<td>GESHA</td>
<td>Goddard Equipment Support Hardware Assembly</td>
</tr>
<tr>
<td>GHe</td>
<td>Gaseous Helium</td>
</tr>
<tr>
<td>GN₂</td>
<td>Gaseous Nitrogen</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HR</td>
<td>Harness Radiator</td>
</tr>
<tr>
<td>HSA</td>
<td>Heat exchanger stage assembly</td>
</tr>
<tr>
<td>IEC</td>
<td>ISIM Electronics Compartment</td>
</tr>
<tr>
<td>I/F</td>
<td>Interface</td>
</tr>
<tr>
<td>IHR</td>
<td>ISIM Harness Radiator</td>
</tr>
<tr>
<td>IOS</td>
<td>ISIM to OTE and Spacecraft Requirements Document</td>
</tr>
<tr>
<td>ISIM</td>
<td>Integrated Science Instrument Module</td>
</tr>
<tr>
<td>IRSU</td>
<td>ISIM Remote Services Unit</td>
</tr>
<tr>
<td>ITP</td>
<td>ISIM Test Platform</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Space Center</td>
</tr>
<tr>
<td>JWST</td>
<td>James Webb Space Telescope</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>KM</td>
<td>Kinematic Mount</td>
</tr>
<tr>
<td>LN₂</td>
<td>Liquid Nitrogen</td>
</tr>
<tr>
<td>MATF</td>
<td>Master Alignment Test Fixture</td>
</tr>
<tr>
<td>MCA</td>
<td>Monitor and Calibration Assembly</td>
</tr>
<tr>
<td>MIRI</td>
<td>Mid Infrared Instrument</td>
</tr>
<tr>
<td>MLI</td>
<td>Multilayer Insulation</td>
</tr>
<tr>
<td>NGAS</td>
<td>Northrop Grumman Aerospace Systems</td>
</tr>
<tr>
<td>NIRCam</td>
<td>Near Infrared Camera</td>
</tr>
<tr>
<td>NIRSpec</td>
<td>Near Infrared Spectrograph</td>
</tr>
<tr>
<td>OA</td>
<td>Optics Assembly</td>
</tr>
<tr>
<td>OM</td>
<td>Optics Module</td>
</tr>
<tr>
<td>OSIM</td>
<td>OTE Simulator</td>
</tr>
<tr>
<td>OTE</td>
<td>Optical Telescope Element</td>
</tr>
<tr>
<td>OTIS</td>
<td>Optical Telescope / ISIM</td>
</tr>
<tr>
<td>PG</td>
<td>Photogrammetry</td>
</tr>
<tr>
<td>PMBSS</td>
<td>Primary Mirror Backplane Support Structure</td>
</tr>
<tr>
<td>SES</td>
<td>Space Environment Simulator</td>
</tr>
<tr>
<td>SI</td>
<td>Science Instrument</td>
</tr>
<tr>
<td>SIF</td>
<td>SES Integration Frame</td>
</tr>
<tr>
<td>SIIP</td>
<td>Science Instrument Interface Plate</td>
</tr>
<tr>
<td>STMS</td>
<td>Surrogate Thermal Management System (for use in test)</td>
</tr>
<tr>
<td>TB</td>
<td>Thermal Balance</td>
</tr>
<tr>
<td>TCU</td>
<td>Thermal Conditioning Unit</td>
</tr>
<tr>
<td>TMS</td>
<td>Thermal Management System (flight)</td>
</tr>
<tr>
<td>TV</td>
<td>Thermal Vacuum</td>
</tr>
<tr>
<td>TVDS</td>
<td>Thermal Vacuum Data System</td>
</tr>
<tr>
<td>VIS</td>
<td>Vibration Isolation System</td>
</tr>
<tr>
<td>VM</td>
<td>Verification Model</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
</tbody>
</table>
Acknowledgements

- Thermal Control during the CV3 test was an effort of many people, including Test Directors, conductors, operators, Systems, contamination control personnel, and scientists

- Brian Comber provided most of the test thermal modeling and helped write the procedures. He also calibrated the Q-meters. Dharmendra Patel used the detailed TMG model to answer detailed questions for flight and test, Paul Cleveland provided support on IEC, and Jim Tuttle supported harness radiator testing and harness heat load measurement effort. Kim Banks and her team of cryogenics experts provided coverage and support of the GSE cooler used for MIRI in the testing.

- The following people provided thermal shift coverage for the duration of the 108 day test:

 Rosemary Thorpe Chris May
 Omar Quinones Regis Venti
 Tak Or Mark Kobel
 Angelique Davis Jim Tuttle (HR system lead)
 Paul Cleveland Ted Michalek
 Brian Comber Kan Yang
 Tamara O’Connell Bill Chang
 Dharmendra Patel Amil Mann
 Stuart Glazer