Control de la Corrosion en la Industria Aeroespacial

Rumbo a los 50 Años
Universidad Autónoma del Carmen
Noviembre 14 – 18, 2016

Luz Marina Calle, Ph.D.
NASA’s Corrosion Technology Laboratory
Kennedy Space Center, FL, 32899, USA

KSC Research Team:
Wendy Li, Ph.D.
Jerry W. Buhrow
Marissa N. Johnsey
Overview

Introduction

NASA’s Current Plans for Space Exploration

Orion and Space Launch System

Human Exploration

Corrosion and Space Exploration

What is Corrosion?

Impact and Cost of Corrosion

Corrosion Grand Challenges

Corrosion in the Aerospace Industry

NASA’s Technology Roadmap

Coatings for the Space and Launch Environments

KSC Natural and Launch Environment

Corrosion Control Technology Development Timeline

Corrosion and pH

Smart Coatings for Corrosion Detection and Control

Microcapsules for Corrosion Indication, Inhibition, and Self-healing

Microcapsule Response to pH Increase

Hidden and early Corrosion Indication

On-demand corrosion inhibition

Self-healing

Summary

Acknowledgements
Introduction

- NASA has been battling corrosion since the inception of the Space Program in 1962.
- NASA launches from the most naturally corrosive environment in North America. Corrosion conditions at the launch pads are even more severe due to solid rocket booster (SRB) exhaust products.
- NASA’s Space Technology Roadmap includes corrosion control technologies as one of the areas needed to lower the cost and improve the sustainability and efficiency of its ground operations in support of future launch activities.
- NASA has developed microencapsulation technology specifically designed for corrosion control applications (U.S. Patents No. 7,790,225, 2010 and 20130017612, 2013).
- Micro containers are being used to develop a smart multifunctional coating for autonomous corrosion detection, control, and self-healing.
- This presentation provides an overview of the background and progress made to date in the development of a smart multifunctional coating to indicate corrosion at an early stage and in hidden areas, to deliver corrosion inhibitors on demand, and to self-heal mechanical damage, such as a scratch.
"NASA's Space Launch System (SLS) and Orion will allow human exploration to continue beyond the moon in ways that were once a glimmer in our minds eye. Now we are building the hardware and developing the engineering operations teams that will launch the vehicle that will one day take people to Mars"
Orion/SLS combination is critical to extending human presence beyond low earth orbit
Exploration Mission Timeline

2010 PA-1

2014 EFT-1

2017 EM-1

2018 AA2

2021 EM-2
Orion/SLS are the Basis for Exploration beyond Earth Orbit
HUMAN EXPLORATION
NASA's Journey to Mars

EARTH RELIANT
MISSION: 6 TO 12 MONTHS
RETURN TO EARTH: HOURS

Mastering fundamentals aboard the International Space Station

U.S. companies provide access to low-Earth orbit

PROVING GROUND
MISSION: 1 TO 12 MONTHS
RETURN TO EARTH: DAYS

Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

MARS READY
MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS

Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov
The future of exploration

International Space Station
220 mi

Lagrangian Point L2
274,000 mi

Near-Earth Asteroid
~3,100,000 mi

Moon
239,000 mi

Europa
390,400,000 mi

Mars
34,600,000 mi

70 t

130 t

Commercial Partners

Space Launch System and Orion enable solar system exploration
One challenge with space exploration is that equipment must withstand radical conditions, from the heat of rocket exhaust to extreme cold in space. Surprisingly, one of the most destructive forces is the corrosive effect of saltwater-laden ocean spray and fog. It rusts launch structures and equipment at the Kennedy Space Center.
What is Corrosion?

- Corrosion is the deterioration of a material due to reaction with its environment (M.G. Fontana). It literally means to "gnaw away"
- Degradation implies deterioration of the properties of the material.
- Metal atoms in nature are present in chemical compounds (i.e. minerals).
- Metals in their uncombined state are in a high energy state. The tendency is to corrode and revert to the low energy state. Corrosion has been called metallurgy in reverse.
Impact of Corrosion

Repairs will cost about $60 million USD and take about 2 years.

At US $2.2 (1.6 €) trillion, the annual direct cost of corrosion worldwide is over 3% of the world's GDP.*

Direct costs do not include the environmental damage, waste of resources, loss of production, or personal injury.
Corrosion Grand Challenges*

- Development of cost-effective, environment-friendly, corrosion-resistant materials and coatings.
- High-fidelity modeling for the prediction of corrosion degradation in actual service environments.
- Accelerated corrosion testing under controlled laboratory conditions. Such testing would quantitatively correlate with the long-term behavior observed in service environments.
- Accurate forecasting of remaining service time until major repair, replacement, or overhaul becomes necessary. i.e., corrosion prognosis.

*Research Opportunities in Corrosion Science and Engineering, Committee on Research Opportunities in Corrosion Science and Engineering; National Research Council (2010)
The aerospace industry employs high strength aluminum alloys as structural materials for airplanes because of a combination of valuable mechanical properties, strength to weight ratio, good corrosion resistance, easy recyclability, and formability.

Aluminum needs alloying with other elements in order to improve its mechanical strength.

This alloying of aluminum with other metallic elements has a significant effect on its corrosion resistance properties.

Reduction in corrosion resistance occurs as a result of the heterogeneous microstructure attributed to the second phase intermetallic particles of various sizes and compositions in the aluminum alloy matrix.

The presence of these intermetallic particles in the aluminum alloy microstructure is often responsible for localized corrosion in the form of pitting, intergranular corrosion, exfoliation corrosion, etc., depending on the alloy type.

Aluminum alloy surfaces are coated to enhance their corrosion resistance.
This picture of Aloha Airlines Flight 243, was taken after one-third of the roof flew off of the aircraft while cruising at 24,000 feet. A series of small cracks, caused by corrosion, had grown simultaneously at many nearby rivet holes, the devastating results of which can be seen in this picture. This is an extreme example of the damage that corrosion can cause, and an indication of why the protection of aluminum against corrosion is so important in the aerospace industry.

Since this mishap, the aviation community has struggled to accurately predict the onset of corrosion or the extent of structural damage it induces. Despite advances in corrosion algorithms, computation material research, simulation, reliability and maintenance data analysis, a reliable model for prediction corrosion on aging aircraft has yet to be produced. This incident established US civil and military programs for ageing aircraft of which corrosion was a principal area of focus.

Historically, corrosion prevention has not been appreciably designed into an aircraft.
NASA’s Technology Roadmap

1. Launch Propulsion Systems
2. In-Space Propulsion Technologies
3. Space Power and Energy Storage
4. Robotics and Autonomous Systems
5. Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
6. Human Health, Life Support, and Habitation Systems
7. Human Exploration Destination Systems
8. Science Instruments, Observatories, and Sensor Systems
9. Entry, Descent, and Landing Systems
10. Nanotechnology
11. Modeling, Simulation, Information Technology, and Processing
12. Materials, Structures, Mechanical Systems, and Manufacturing
13. Ground and Launch Systems
14. Thermal Management Systems
15. Aeronautics
Corrosion Control Technologies

NASA Space Technology Roadmap

America is beginning an exciting new chapter in space exploration. To enable the future, NASA has developed a set of roadmaps to define the key new technologies required for our human and robotic explorers to safely venture into deep space, to better understand how our own solar system evolved, and to unravel the mysteries of our universe.

The map you see here is a graphical representation of the NASA Space Technology Roadmaps, serving as a portal to the various technologies that NASA is developing. Let this technology portal serve as a starting point for your adventures beyond the bounds of Earth...

To learn more visit www.nasa.gov/oct

13.2.1 Corrosion Prevention, Detection and Mitigation
Since its inception in 1958, NASA has accomplished many great scientific and technological feats in air and space. NASA technology also has been adapted for many non-aerospace uses by the private sector. NASA remains a leading force in scientific research and in stimulating public interest in aerospace exploration, as well as science and technology in general.
New Materials and Coatings to Meet Changing Demands

Evolution of aerospace and automotive materials, coatings, and applications processes motivated by:

- Changing environmental regulations
- Demands for better energy efficiency and performance
- Sustainable supply chain

Future systems require smart coatings with on-demand corrosion protection, healing, and corrosion sensing.

Future aerospace and automotive platforms will utilize composites, new alloys and coatings with multifunctional capabilities.

An artist illustration of the Vehicle Assembly Building and NASA’s Space Launch System and Orion crew module on the mobile launcher, with Launch Pad 39B in the background.
Corrosion Protective Coatings

- Barrier (passive).
- Barrier plus active corrosion inhibiting components:
 - Sacrificial (zinc-rich primers)
 - Corrosion inhibitors (can have detrimental effects on the coating properties and the environment; most expensive additive; subject to progressively stricter environmental regulations)
- Smart/Active/Functional/Self-healing

![Schematic of a typical multi-coating system used to protect aluminum alloys from corrosion.](image)

Schematic of a typical multi-coating system used to protect aluminum alloys from corrosion. The conversion coating provides the first layer of corrosion protection and acts as a base for improved adhesion to the primer. Chromate and chromate-phosphate-based conversion coatings have been used for this purpose for several decades, as they are effective in inhibiting the corrosion of aluminum alloys. However, the use of chromium-containing chemicals has been limited because of harmful carcinogenic effects, and intense research efforts are in progress for finding alternatives.
Coatings for the Space Environment

The Space Environment is characterized by:

- Low pressure (vacuum)
- Atomic Oxygen (causes erosion of materials)
- Ultraviolet (UV) radiation
- Charged particles
- Temperature extremes
- Electromagnetic radiation
- Micrometeoroids
- Man-made debris
Corrosion protection coating on aluminum lithium alloy (left) and heat shield (right). The heat shield protects the spacecraft from temperatures reaching 4000 degrees Fahrenheit (2204 °C)
Orion 37 days prior to 1st Test Flight
Materials Testing for Space

Materials are tested on the exterior of the International Space Station. The payload container is mounted so one side faces the Earth and the other faces space. The experiments provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs.

NASA astronaut Patrick G. Forrester installs exposure experiments designed to collect information on how different materials weather in the environment of space

NASA astronaut Andrew Feustel retrieves long duration materials exposure experiments before installing others during a spacewalk on May 20, 2011.
Textron technicians apply the Avcoat material by “gunning” the material into each of the 330,000 individual cells of the honeycomb structure.
Interaction of the Space Shuttle with the upper atmosphere creates a corona seen at night (right photo), in part, due to atomic oxygen.

In the upper reaches of the atmosphere, about 200-500 miles, an elemental form of oxygen is created from exposure to intense solar ultraviolet light. Oxygen molecules are decomposed from O_2 into two separate oxygen atoms. This form of elemental oxygen is highly reactive and exposes a spacecraft to corrosion that shortens its life. While developing methods to prevent damage from atomic oxygen, it was discovered that it could also remove layers of soot or other organic material from a surface. Atomic oxygen will not react with oxides, so most paint pigments will not be affected by the reaction.
The left photo was taken after the Cleveland Museum of Art's staff attempted to clean and restore it using acetone and methylene chloride. The right photo is after cleaning by the atomic oxygen technique.
Coatings for NASA’s Launch Environment
The Kennedy Space Center in Florida, USA, is a special place where we launch rockets from a wild life refuge in one of the most corrosive areas in the world.
KSC Natural Environment
KSC Launch Environment
Space Program starts
Corrosion failures begin

Atmospheric exposure testing begins near the launch pads

Space Shuttle introduces acid deposition products that make corrosion worse

Accelerated corrosion testing (salt fog and electrochemical) begins

Corrosion Technology Laboratory is created
The Corrosion Technology Laboratory starts developing smart coatings

Corrosion testing and failure analysis
Corrosion testing and technical innovation
Atmospheric Exposure Testing
KSC Natural Environment
Changes in Corrosion Rate with Distance from the Ocean

Comparison of Average Corrosion Rate (Weight Loss) of UNS G10080 and Atmospheric Salt Content at Various Distances from Seacoast

- Weight Loss, UNS G10080
- Salt Collection Rate (Funnel Samples)
Corrosion Rates of Carbon Steel

Corrosion rates of carbon steel calibrating specimens at various locations*

<table>
<thead>
<tr>
<th>Location</th>
<th>Type Of Environment</th>
<th>µm/yr</th>
<th>Corrosion rate(^a) mils/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquimalt, Vancouver Island, BC, Canada</td>
<td>Rural marine</td>
<td>13</td>
<td>0.5</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Industrial</td>
<td>30</td>
<td>1.2</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>Industrial</td>
<td>38</td>
<td>1.5</td>
</tr>
<tr>
<td>Limon Bay, Panama, CZ</td>
<td>Tropical marine</td>
<td>61</td>
<td>2.4</td>
</tr>
<tr>
<td>East Chicago, IL</td>
<td>Industrial</td>
<td>84</td>
<td>3.3</td>
</tr>
<tr>
<td>Brazos River, TX</td>
<td>Industrial marine</td>
<td>94</td>
<td>3.7</td>
</tr>
<tr>
<td>Daytona Beach, FL</td>
<td>Marine</td>
<td>295</td>
<td>11.6</td>
</tr>
<tr>
<td>Pont Reyes, CA</td>
<td>Marine</td>
<td>500</td>
<td>19.7</td>
</tr>
<tr>
<td>Kure Beach, NC (80 ft. from ocean)</td>
<td>Marine</td>
<td>533</td>
<td>21.0</td>
</tr>
<tr>
<td>Galeta Point Beach, Panama CZ</td>
<td>Marine</td>
<td>686</td>
<td>27.0</td>
</tr>
<tr>
<td>Kennedy Space Center, FL (beach)</td>
<td>Marine</td>
<td>1070</td>
<td>42.0</td>
</tr>
</tbody>
</table>

\(^a\)Two-year average

A mil is one thousandth of an inch
The launch environment at KSC is extremely corrosive:

- Ocean salt spray
- Heat
- Humidity
- Sunlight
- Acidic exhaust from SRBs
Natural Salt Fog Chamber
Orbiter Flight and Ground Environment

Graph showing relative severity of corrosion environment for different locations:
- OPF
- VAB PAD
- Orbit Land Ferry

Images of shuttle and launchpad.
In 1981 the Space Shuttle introduced acidic deposition (70 tons of HCl) products. NASA plans to use Shuttle-derived SRB rockets in future missions.
Electrochemical Nature of Corrosion

Metal is oxidized (anodic reaction); something else is reduced (cathodic reaction)

Overall Reaction:

Anodic: \(Fe \rightarrow Fe^{2+} + 2e^- \)

Cathodic: \(2H_2O + O_2 + 4e^- \rightarrow 4OH^- \)
Launch Complex 39 pH Values after a Space Shuttle Launch

- **Zone 1:** pH ~ 0 - 1
- **Zone 2:** pH ~ 2 - 3
- **Zone 3:** pH ~ 2 - 3

![PH Scale Image](attachment:image.png)

- pH Scale: 0 (Acidic) - 7 (Neutral) - 14 (Basic)
- FSS 115” Level
Zone 1: Direct or indirect impingement by SRB exhaust; Zone 2: Elevated temperatures and acid deposition; Zone 3: Acid exposure or other types of chemical contamination
Corrosion Protective Coatings

- Barrier (passive).

- Barrier plus active corrosion inhibiting components:
 - Sacrificial (zinc-rich primers)
 - Corrosion inhibitors (can have detrimental effects on the coating properties and the environment; most expensive additive; subject to progressively stricter environmental regulations)

- Smart (Intelligent, self-healing, active or feedback active)

 A smart coating detects and responds actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. These coatings are also referred to in the literature as intelligent, self-healing, and active or feedback active, to distinguish them from barrier or passive coatings.

Smart coating responding to changing pH conditions
The use of "smart coatings" for corrosion sensing and control relies on the changes that occur when a material degrades as a result of its interaction with a corrosive environment.

Such transformations can be used for detecting and repairing corrosion damage.

NASA’s Corrosion Technology Laboratory is developing a coating that can detect and repair corrosion at an early stage.

This coating is being developed using pH-sensitive microcontainers that deliver the contents of their core when corrosion starts to:

- Detect and indicate the corrosion location
- Deliver environmentally friendly corrosion inhibitors
- Deliver healing agents to repair mechanical coating damage.
Corrosion indication, detection, and healing of mechanical damage can be achieved using microencapsulation technology

What are microcontainers?
Particles or liquid drops coated in polymers. These microcontainers can carry any material that needs protection or controlled release.

Why microencapsulate a material?
- Incorporate active materials while maintaining coating integrity
- Achieve controlled-release
- Make active materials easier/safer to handle.
- Incorporate multiple component systems.
- Prevent undesired leaching
- Versatility
Types of Feedback-Active Micro Containers for Corrosion Detection and Control

- Containers with an active ingredient-rich core and stimuli-responsive shell (microcapsules)

- Containers with an active ingredient incorporated into a stimuli-responsive matrix (micro particles)

- Containers with a porous ceramic core impregnated by inhibitor and enveloped by a stimuli-responsive polyelectrolyte (PE) shell*

Corrosion and pH

pH Scale

0 7 14
Acidic Neutral Basic

Launch pad after launch
Vinegar
Seawater

Basic pH used for corrosion detection
Corrosion Indication

pH changes that occur during corrosion of a metal

Elapsed Time: 0 hours

0.5 hours

1.5 hours

4.5 hours

3 days

2
3
4
5
6
7
8
9
10

Acidic
Slightly Acidic
Neutral
Slightly Basic
Basic
pH Sensitive Microcapsules for Corrosion Indication

Microcapsule containing pH indicator (inhibitor, self healing agents)

The shell of the microcapsule breaks down under basic pH (corrosion) conditions

pH indicator changes color and is released from the microcapsule when corrosion starts
Why pH-Sensitive Micro Containers?

Benefits from corrosion sensing coatings:

- Overcoming solubility limit of indicators in solvents
- Protecting indicator from coating constituents
- Easy incorporation into different paint systems

Benefits from corrosion-controlled inhibitor release:

- **Smart:**
 - Corrosion-controlled release on demand at tailorable rate.
 - Minimization of inhibitor loss by leaching or diffusion if desired.
 - Inhibitor release can be maximized when corrosion occurs.
 - Inhibitor delivery when and where needed.

- **Green:**
 - Reduction of the detrimental impact of inhibitors on the environment.

- **Enabling:**
 - Inhibitor isolation avoids incompatibility with other coating components.
 - Allows incorporation of water-soluble inhibitor into paint formulation without blistering.
Smart Coating for Corrosion Detection and Control

1. Corrosion indicators
2. Corrosion inhibitors
3. Healing agents

Ruptured Microcapsule:
- indicates corrosion
- protects metal from corrosion
- repairs damaged area

Chemical Reaction:

$\text{Fe}^{2+} + e^- \\ \text{mechanical damage causes capsule to rupture} \\
O_2 + H_2O \\
\text{Corrosion causes capsule to rupture} \\
\text{repairs damaged area} \\
\text{OH}^- \\
\text{OH}^-$
Versatility: Microcapsules can deliver multiple types of contents into different paint systems. The microcapsule wall can be modified to deliver the contents at different rates.

Multiple Ingredients
- Indicators
 - Indicator A
 - Indicator B
 - Indicator C
- Inhibitors
 - Inhibitor A
 - Inhibitor B
 - Inhibitor C
- Healing Agent
 - Healing Agent A
 - Healing Agent B

Multiple Paints
- Paint System A
- Paint System B
- Paint System C
Summary

- NASA has been battling corrosion since the inception of the Space Program in 1962.
- NASA launches from the most naturally corrosive environment in North America.
- NASA’s Space Technology Roadmap includes corrosion control technologies as one of the areas needed to lower the cost and improve the sustainability and efficiency of its space exploration missions.

Corrosion control in the aerospace industry is based on materials selection and coatings.

The aerospace industry has relied on hexavalent chromium coatings for corrosion control of aluminum alloys.

New corrosion control coatings are needed to replace hexavalent chromium coatings because of their toxicity and imminent ban.

NASA is developing smart coatings as replacements for hexavalent chromium coatings for the aerospace industry.

Acknowledgements

FUNDING