NASA UAS Integration Into the NAS Project
Detect and Avoid Display Evaluations

Air Force – NASA Bi-Annual Research Council Meeting
12 OCT 2016

Jay Shively (Robert.J.Shively@NASA.GOV)
NASA Ames Research Center
Background

• Approach: Conduct a series of iterative human in the loop experiments, in a representative simulation environment, with different display configuration to objectively measure pilot performance on maintaining well clear
 – Key metrics: pilot response time, losses of well clear, severity of losses of well clear
 – Four simulations have been conducted: PT4, iHITL, PT5, PT6
 • Displays are modified/improved/changed based on data/observations
 • Displays are carried through to new HITLs to create anchors or linkages to previous data for comparison
 • New displays are developed for test
 • Test/simulation environment/protocols also updated and improved between HITLs
 – Two “mini-HITLs”
 • TCAS interoperability
 • Missing Information
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Buffered Well Clear Criteria</th>
<th>Alerting Time Threshold</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAA Warning Alert</td>
<td>• Immediate action required</td>
<td>DMOD = 0.75 nmi HMD = 0.75 nmi ZTHR = 450 ft modTau = 35 sec</td>
<td>25 sec (TCPA approximate: 60 sec)</td>
<td>“Traffic, Maneuver Now”</td>
</tr>
<tr>
<td></td>
<td>DAA Corrective Alert</td>
<td>• On current course, corrective action required</td>
<td>DMOD = 0.75 nmi HMD = 0.75 nmi ZTHR = 450 ft modTau = 35 sec</td>
<td>55 sec (TCPA approximate: 90 sec)</td>
<td>“Traffic, Avoid”</td>
</tr>
<tr>
<td></td>
<td>DAA Preventive Alert</td>
<td>• On current course, corrective action should not be required</td>
<td>DMOD = 1.0 nmi HMD = 1.0 nmi ZTHR = 700 ft modTau = 35 sec</td>
<td>55 sec (TCPA approximate: 90 sec)</td>
<td>“Traffic, Monitor”</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
<td>• No action expected</td>
<td>Within surveillance field of regard</td>
<td>X</td>
<td>N/A</td>
</tr>
</tbody>
</table>

DMOD = Decision Making Omission Distance

HMD = Human Memory Distance

ZTHR = Zone Threshold

modTau = Modified Traffic Approximation Time

TCPA = Time to Closest Point of Approach
Simulation Environment: LVC Architecture

SaaProc Input:
- Traffic
- Ownship

SaaProc Output:
- Intruders
- Saa Threat Alerts and Resolutions

SaaProc/JADEM (sensor model):
- Traffic
- Ownship

Stratway Input:
- Intruders
- Ownship

Stratway Output:
- Stratway Bands Msg

VSCS Input:
- Intruders
- SAA Threat Alerts

VSCS Output:
- Ownship

LVC Gateway:
- Traffic
- Ownship

Intruders:
- Traffic

Ownship:
- Traffic

ADRS (LaRC):
- Traffic
- Ownship

ATC & Pseudo Pilot System (MACS):
- Traffic

ATC & PPIlots Input:
- Ownship

ATC & PPIlots Output:
- Traffic
- **Vigilant Spirit Control Station (VSCS)** from Air Force Research Laboratory (AFRL)
- Modification and on-site support by AFRL
- New Space Act Agreement is in process to continue and extend this collaboration
- Provides experimental flexibility and also mature enough to use in flight test
 - AFRL has used in flight test with small UAS
 - NASA has used it as standalone traffic display & as a control station to send commands to surrogate UAS
Losses of Well Clear Proportions Across Simulations

- PT4
 - Basic Standalone
 - Basic Integrated
 - Advanced Standalone
 - Advanced Integrated
 - Info Only
 - Info + Vector
 - Info + AR
 - Info + Vector + AR
 - Info Only
 - No-Fly Bands
 - Omni Bands
 - Vector Planner

- iHITL

- PT5
Self-Separation Timeline

Approximate detection range = 8 nm
Detect Intruders
Pilots Determine Resolution
Negotiate Clearance with ATC and uplink
maneuver to aircraft
DAA-TCAS Alerting Structure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Buffered Well Clear Criteria</th>
<th>Alerting Time Threshold</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| ![Symbol] | TCAS RA | • **Immediate action required**
• Comply with RA sense and vertical rate
• Notify ATC as soon as practicable after taking action | (Driven by TCAS-II) | x | “Climb/Descend” |
| ![Symbol] | DAA Warning Alert | • **Immediate action required**
• Notify ATC as soon as practicable after taking action | DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec | 25 sec
(TCPA approximate: 60 sec) | “Traffic, Maneuver Now” |
| ![Symbol] | DAA Corrective Alert | • On current course, **corrective action required**
• Coordinate with ATC to determine an appropriate maneuver | DMOD = 0.75 nmi
HMD = 0.75 nmi
ZTHR = 450 ft
modTau = 35 sec | 55 sec
(TCPA approximate: 90 sec) | “Traffic, Avoid” |
| ![Symbol] | DAA Preventive Alert | • On current course, corrective action **should not be required**
• Monitor for intruder course changes
• Talk with ATC if desired | DMOD = 1.0 nmi
HMD = 1.0 nmi
ZTHR = 700 ft
modTau = 35 sec | 55 sec
(TCPA approximate: 90 sec) | “Traffic, Monitor” |
| ![Symbol] | Remaining Traffic | • No action expected | Within surveillance field of regard | x | N/A |
Summary
RTCA SC 228 Phase 1 MOPS

• Suggestive Displays
 – Guidance Bands
• Integrated or stand alone*
• Alerting Logic
• Minimum Information tags
• TCAS/DAA interop logic
• Well Clear Recovery logic/display
• Pilot response timeline
 – Derived RADAR Requirements
Support of RTCA MOPS Phase 2 (in planning)

Potential DAA Topics:
• Well Clear
• Terminal Operations
• Alternative Sensors
• GBSAA

VSCS:
• New well clear definitions
• New Sensor Models
• Smaller UAS Models
• Terminal Airspace