Johnson Space Center Engineering Directorate

L-8: Enabling Human Spaceflight Exploration Systems & Technology Development

Montgomery Goforth
November 2016

Public Release Notice
This document has been reviewed for technical accuracy, business/management sensitivity, and export control compliance. It is suitable for public release without restrictions per NF1676 #_____.

https://ntrs.nasa.gov/search.jsp?R=20160013645 2020-06-13T11:53:07+00:00Z
NASA’s Journey to Mars

Body of Previous Architectures, Design Reference Missions, Emerging Studies and New Discoveries

- Internal NASA and other Government
- International Partners
- Commercial and Industrial
- Academic
- Technology developments
- Science discoveries

2010 Authorization Act, National Space Policy, NASA Strategic Plan

- Establish capacity for people to live and work in space indefinitely
- Expand human presence into the solar system and to the surface of Mars

Evolvable Mars Campaign

Human Exploration
NASA’s Journey to Mars

Earth Reliant
Mission: 6 to 12 months
Return to Earth: Hours

Proving Ground
Mission: 1 to 12 months
Return to Earth: Days

Earth Independent
Mission: 2 to 3 years
Return to Earth: Months

- Mastering fundamentals aboard the International Space Station
- Expanding capabilities by visiting an asteroid restricted to a lunar distant retrograde orbit
- U.S. companies provide access to low-Earth orbit
- The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft
- Developing planetary independence by exploiting Mars, its moons and other deep space destinations

www.nasa.gov
Engineering Priorities

1. Enhance ISS: Enhanced missions and systems reliability per ISS customer needs
2. Accelerate Orion: Safe, successful, affordable, and ahead of schedule
3. Enable commercial crew success
4. Human Spaceflight (HSF) exploration systems development
 - Technology required to enable exploration beyond LEO
 - System and subsystem development for beyond LEO HSF exploration
• Priorities are nice, but they are not enough.
• We needed a meaningful goal.
• We needed a deadline.

• Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025
 • Develop and mature the technologies and systems needed
 • Develop and mature the personnel needed
Characterizing L-8

L-8 Is Not:
- A program to go to Mars
- Another Technology Road-Mapping effort

L-8 Is:
- A way to translate Agency Technology Roadmaps and Architectures/Scenarios into a meaningful path for JSC Engineering to follow.
- A way of focusing Engineering’s efforts and identifying our dependencies
- A way to ensure Engineering personnel are ready to step up to the plate when the next program is defined
- A framework supplying rationale for our proposals to obtain funding for technology development
- An organizing principle for our Domain Implementation Plans
JSC Engineering’s Domain Implementation Plan

- Life Support
- Active Thermal Control
- EVA
- Habitation Systems

- Human System Interfaces
- Wireless & Communication Systems
- Command & Data Handling
- Radiation & EEE Parts

- Lightweight Habitable Spacecraft
- Entry, Descent, & Landing
- Autonomous Rendezvous & Docking
- Vehicle Environments

- Entry, Descent, & Landing
- Autonomous Rendezvous & Docking
- Deep Space GN&C

- Reliable Pyrotechnics
- Integrated Propulsion, Power, & ISRU
- Energy Storage & Distribution
- Breakthrough Power & Propulsion

- Crew Exercise
- Simulation
- Autonomy
- Software
- Robotics
Avionics Systems Domain Implementation
Plan Decomposition Example

Areas of Emphasis (AOEs):
- RFID ALM
- RFID Sensing
- Delay Tolerant Networking (DTN)
- Mesh Networking
- Wireless Development Flight Instrumentation
- Proximity Communications
- Reconfigurable/Software defined radio
- Innovations for C&T testing and validation
- Innovative applications of RF technology
- Proximity antenna technologies
- Optical Communication

Pathstones:
- RF Interrogator development
- Fabric antenna development
- System integration and modularization

A SpaceCom 2016 Collaboration Opportunity
“L-8: RFID technology and sensor interrogators for wireless sensing/telemetry”
– Ray Wagner
FY 2016 IRAD Investments Tied to L-8

Integrated L-8 Systems & Projects

- **Avionic Systems**
 - Shape-Morphing Adaptive Radar Technology (SMART) – L. Erickson
 - Software Graphics Processing Unit (sGPU): Solving the Visual Display Problem for BEO Missions – McCabe
- **Crew and Thermal Systems**
 - ISS Capillary Development (CapDev) Test Bed – Sargusingh
 - The Modular Wearable Architecture: Lowering the Human-System Barrier – Simon
 - Novel Passive Thermal Technology In-Flight Demonstration – Alvarez-Hernandez
- **Aeroscience and Flight Mechanics**
 - ISS Capillary Development (CapDev) Test Bed – Sargusingh
 - The Modular Wearable Architecture: Lowering the Human-System Barrier – Simon
 - Novel Passive Thermal Technology In-Flight Demonstration – Alvarez-Hernandez
- **Propulsion and Power**
 - Integrated Lox/LCH4: A Unifying Technology for Future Exploration (Phase II Work) – B. Banker
 - Solid State Thermionics Power – J. George
 - Regenerative Gas Dryer for Integrates ISRU Systems – A. Paz
 - LOX/LCH4 Propulsion Test in Space Environment – Morehead
 - Q-Thruster Work
- **Structural Engineering**
 - Integrated Lox/LCH4: A Unifying Technology for Future Exploration (Phase II Work) – B. Banker
 - Solid State Thermionics Power – J. George
 - Regenerative Gas Dryer for Integrates ISRU Systems – A. Paz
 - LOX/LCH4 Propulsion Test in Space Environment – Morehead
 - Q-Thruster Work
- **Software, Robotics and Simulation**
 - Visual Odometry for Autonomous Deep-Space Navigation – Robinson
 - Advanced Analytic Tools & Capabilities for Aerosciences – Kirk
 - Mid L/D Mars EDL Pathfinder – Campbell
 - MED-2 Exercise Device Operations – Zumbado
 - CFS: Human Spaceflight Product Line – Prokop
 - HESTIA Sim Support – Bielski
- **Parachute Canopy Instrumentation Package** – Alshahin
- **Orion Avcoat Material Heat Shield Flight Test** – Salazar
- **Integrated Lox/LCH4: A Unifying Technology for Future Exploration (Phase II Work)** – B. Banker
- **Solid State Thermionics Power** – J. George
- **Regenerative Gas Dryer for Integrates ISRU Systems** – A. Paz
- **LOX/LCH4 Propulsion Test in Space Environment** – Morehead
- **Q-Thruster Work**
FY 2017 IRAD Investments Tied to L-8

JSC Engineering: HSF Exploration Systems Development

Shape-Morphing Adaptive Radar Technology (SMART) II – Erickson
Laser Processed Heat Exchangers - Hansen
A Low Power, Solid State, Method of Oxygen Supply - Graf

Magnetic Radiation Shielding for Human Space Exploration - Arndt

Orion Heat Shield Spectrometer – Holland
Entry Vehicle (Dragon) On Demand Instrumentation - Wells & Bouslog
Charring Ablator Response (CHAR) Sublimation - Remark
Aluminum Orbital Arc Weld Development - Luna
Inflatable Airlock EVA Interface - Litteken

Pulsar Navigation for Crewed Exploration of the Solar System - D’Souza
Mid-L/D Ballistic Range Aerodynamics Test - Sostaric
Retiring the Side Wall Rupture Risk with Li-Ion – Darcy
SMR/SOFC System Integration for LOx/LCH4/ISRU – Mwara
Cubesat Q-Thruster Technology for Exploration – White
Flat H Redundant Frangible Joint (RFJ) - Brown
Augmented Reality Authoring Tool - Wang
Fatigue Reduction and Dexterity Improvements via Space Suit Glove Grasp Strength Augmentation - Rogers
Core Flight Software (CFS) Human Spaceflight Product Line (CITO) - Prokop
Integrated System Demonstration for Spacecraft Autonomy (Basics) - Badger
Potential Collaborations with Academia

JSC Engineering: HSF Exploration Systems Development

CO2 Removal, CO2 Reduction
- Trace Contaminant Control, Particulate Filtration
- Reliable Brine Water Recovery (Low Volume)
- Air Monitoring Techniques/Strategies
- Variable Heat Rejection Technologies/Trades
- Lightweight Bio-resistant CHX
- Advanced Phase Change Materials
- In-Situ Thermal Fluids Chemical Analysis
- Solvent Generation for Reusable Wipes
- Antimicrobial Omniphobic Surface Coatings

Speech Recognition Evaluation
- Natural Language Processing
- Acoustic Echo Cancellation Algorithms (e.g., in a spacesuit)
- Wearable Technologies
- Power Scavenging Sensors
- Mesh Network Implementations
- RF over IP for testing
- E-textile & 3D-printed antennas
- Advanced manufacturing techniques for Sparing of Electronics

Additive Manufactured Lattice Core Designs
- Thin Ply Composites
- Inflatable materials Creep characterization
- Impact & Leak Detection for Inflatables
- Acrylic & Ceramic Window Development & Characterization
- Integrated Thermoelastic Design/Analysis Methods for Heatshields

Integrated Thermoelastic Design/Analysis Methods for Heatshields

Wind Tunnel Tests for Supersonic Retro Propulsion & Mid-L/D Re-entry bodies
- Large Mass Mars Entry Trades
- Autonomous Landing
- Hazard Avoidance Algorithms
- Optical Tracking and Navigation

Autonomous Grasping
- Humanoid Walking
- Integrated Dynamic Systems Simulation
- Trick-based Software Simulation Enhancements
- Rover/Mars Ascent Vehicle Cabin Design Integration
- Augmented Reality Research & Applications
- Autonomy Tools (Robotics Planning, Flight Director In a Box)
Advanced Concepts for O2 Concentration and storage – Graf

Space Environments Test Capability / James Webb Space Telescope (JWST) – Holman

Non-Venting Thermal Control Systems for Space Vehicles – Smith & Massina

RFID technology and sensor interrogators to develop low cost sensor suites - Wagner

Docking Systems and other Attachment/Release mechanisms and related technologies – Lewis

Modeling the integration of hardware and software systems of spacecraft using tools such as SysML - Carrejo

Entry Descent and Landing at Mars - Sostaric

Aeroscience and Flight Mechanics

Propulsion and Power

Software, Robotics and Simulation

Structural Engineering

Avionic Systems

Crew and Thermal Systems

Integrated Systems & Projects

In Situ Resource Utilization (ISRU) Capabilities – Sanders

NDE Methods for Ultimately Reliable Pyrotechnics – Scott & Hinkel

Safe Li-Ion batteries – Darcy & Scott

Spacecraft Autonomy – Badger

Advanced Vehicle Mobility – Junkin

Optimizing Virtual Reality and Tracking Systems for Zero-G Space Environments - Paddock

Using Human-Machine Interactions to Enhance Astronaut Performance and Adaptation in Reduced Gravity Environments - Burkhart

Entry Descent and Landing at Mars - Condon
• Our L-8 efforts have identified a lot of problems to be solved before we can go to Mars, and we need partnerships to help solve them.

• Partnerships with NASA JSC can take many forms:
 • Similar Problems, Different Capabilities \rightarrow Technology Collaboration \rightarrow Solution
 • Partner Technology \rightarrow NASA Evaluation/Test \rightarrow Increased Knowledge
 • Partner Need \rightarrow NASA-unique technology/capability/facility \rightarrow Desired Results
 • NASA Technology \rightarrow Partner adapts to terrestrial need \rightarrow NASA harvests improvements
 • Partner Technology \rightarrow NASA Adapts to Spaceflight Needs \rightarrow Partner harvests improvements
We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s.

Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025.

We have a number of specific partnership opportunities we’re discussing at SpaceCom 2016.

If you’re interested in one of these, or you have other ideas, let us know at:

https://nasajsc.secure.force.com/ConnectForm