Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars.

Briony Horgan1, Noel Scudder1, Elizabeth Rampe2 and Alicia Rutledge1, (1)Purdue University, West Lafayette, IN, (2)Aerodyne - Jacobs JETS contract NASA Johnson Space Center, Houston, TX

Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions.

This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt\%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars.

To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial investigations, and perhaps more similar to poorly crystalline phases identified on Mars.

Abstract ID#: 102035
Password: 224298
Title: Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars.
Topic Selection: New Frontiers of Soil and Plant Sciences: Astropedology and Space Agriculture
Preferred Presentation Format: Oral
Submitter's E-mail Address: briony@purdue.edu
First Choice Program: SSSA Division: Soil Physics and Hydrology
Graduate Student Competition: Not Participating

First author

Presenting Author
Briony Horgan
Purdue University
550 Stadium Mall Dr.
West Lafayette, IN 47907
Phone Number: 503-703-8473
Email: briony@purdue.edu -- Will not be published

Second author
Noel Scudder
Purdue University
550 Stadium Mall Dr.
West Lafayette, IN 47907
Email: nscudder@purdue.edu -- Will not be published

Third author

Elizabeth Rampe
Aerodyne - Jacobs JETS contract NASA Johnson Space Center
2101 Nasa Pkwy
Houston, TX 77058
Email: elizabeth.b.rampe@nasa.gov -- Will not be published

Fourth author

Alicia Rutledge
Purdue University
550 Stadium Mall Dr.
West Lafayette, IN 47907
Email: alicia.rutledge@gmail.com -- Will not be published

Formal Letter of Invitation

To generate a Formal Letter of Invitation (visa letter) please click on your name below.
If you don't see a link below, return to the Author step, click the Edit icon next to your name, and select "Yes" to the Official Letter of Invitation question.

Final Steps

1. Check spelling and contact information.
2. Make necessary corrections:
 - Click any value in the Abstract Control Panel you want to change
 - Edit the information and click the submit button.
3. Print Page if desired.

Conclude Submission