Sensitivity of Airburst Damage Prediction to Asteroid Characterization Uncertainty

Donovan Mathias, Lorien Wheeler, Jessie Dotson
Asteroid Threat Assessment Project
NASA Ames Research Center

DPS48, Pasadena, CA
October 19, 2016
Physics-Based Impact Risk Model

Asteroid Characterization → Input Parameter Distributions

Monte Carlo Sampling

Initial Conditions

Flight Integration
(meteor equations of motion, ablation)

Airburst Altitude
(peak energy deposition)

Fragment-Cloud Model
(breakup and energy deposition)

Blast and Radiation Propagation

Thermal Damage
(3rd degree burns)

Impact Coordinates

Overpressure Damage
(Peak overpressure ≥ 4 psi)

PHA Measurements
- H-magnitude
- Albedo
- Orbital trajectory
- Asteroid class
- Composition

Impact Parameters
- Diameter
- Density
- Strength
- Luminous efficiency
- Velocity
- Entry angle
- Azimuth angle
- Impact coordinates

Local Land Impact Casualties
(Gridded population within largest damage area)

Global Effects Casualties
(Percentage world population killed by climatic effects)

Initial Conditions

Input Parameter Distributions

Monte Carlo Sampling

February 2016
Fragment-Cloud Model (FCM)

- Analytic model of asteroid entry/breakup to estimate energy deposited in the atmosphere
- Combines progressive breakup of independent fragments and “pancaking” debris clouds.

Entry flight: integrates meteor equations of motion and ablation

\[
\begin{align*}
\frac{dm}{dt} &= -0.5 \rho_{\text{air}} v^3 A \sigma \\
\frac{dv}{dt} &= \rho_{\text{air}} v^2 A C_D / m - g \sin \theta \\
\frac{d\theta}{dt} &= (v/(R_E+h) - g/v) \cos \theta \\
\frac{dh}{dt} &= v \sin \theta
\end{align*}
\]

Fragmentation when pressure > strength

\[\rho_{\text{air}} v^2 > \text{strength} \]

Each break yields:
- Multiple independent, identical fragments (baseline 2)
- Debris cloud of specified mass fraction (baseline 50%)

Fragment strengths increase with decreased size

\[S_2 = S_1 (m_1/m_2)^\alpha \]

Clouds broaden and slow under common bow shock

\[v_{\text{dispersion}} = v_{\text{cloud}} (3.5 \rho_{\text{air}} A / \rho_{\text{cloud}})^{1/2} \]

Energy deposition computed as change in total KE of all fragments/clouds as a function of altitude.

Airburst at altitude of peak energy deposition.
Sensitivity to Parameter Variations, 70m Diameter

Baseline vs. Variation:

- Avg. pop. vs. Local gridded pop.
- 70m vs. H-mag 23.5 (~30-150m)
- 3400 vs. Meteorite distribution
- 1e-8 vs. 1e-9 – 1e-7 (uniform)
- 21 vs. 12 – 30 km/s (uniform)
- 45° vs. 0° – 90° (weighted)
- 5.05 vs. 0.1 – 10 MPa (uniform)
- 0.03 vs. 10^{-4} – 10^{-2} (uniform)
Sensitivity to Parameter Variations, 140m Diameter

Casualty Sensitivities, 140m

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. pop.</td>
<td>Local gridded pop.</td>
</tr>
<tr>
<td>140m</td>
<td>H-mag 22 (~65-310m)</td>
</tr>
<tr>
<td>3400</td>
<td>Meteorite distribution</td>
</tr>
<tr>
<td>1e-8</td>
<td>1e-9 – 1e-7 (uniform)</td>
</tr>
<tr>
<td>21</td>
<td>12 – 30 km/s (uniform)</td>
</tr>
<tr>
<td>45°</td>
<td>0° – 90° (weighted)</td>
</tr>
<tr>
<td>5.05</td>
<td>0.1 – 10 MPa (uniform)</td>
</tr>
<tr>
<td>0.03</td>
<td>10^{-4} – 10^{-2} (uniform)</td>
</tr>
</tbody>
</table>

February 2016
Impact Risk Distribution

- Sample risk posture: track any size with at least a one-in-a-million/year chance of causing damage above a threshold level of 4 (10^4 affected people).

Absolute Damage Exceedance by Size Threshold
Stony Asteroids

~75m threshold
Absolute Size & Damage Thresholds

- Damage threshold pushed to smaller H-magnitude equivalent diameters, driven by potential for actual asteroid to be larger than assumed from average albedo conversion.
- For sizes that tend to cause little-to-no damage, potential to be larger than assumed has greater risk impact than potential to be smaller.

H-Mag Size

Direct Diameter