Successful Validation of Sample Processing and qRT-PCR Capabilities on the International Space Station

Macarena Parra
Ames Research Center
October 29, 2016
WetLab-2 Objectives

- Provide on-orbit RNA extraction and qRT-PCR analysis capabilities on ISS
- Facility will support multiple sample types
 - Bacteria, cells, tissue
 - Intent of expanding to plant, blood, etc.
- Also capable of supporting analysis of air, surface, water, and crew health.

The analyzer will remain on ISS, while experiment-specific (primers and probes, RNA isolation chemistry) disposable hardware will launch with the experiments.
Goal of Validation Flight: On-orbit test and check-out of the WetLab-2 system in a systematic way to ensure it will return valid data to future researchers

Objectives of Validation Flight:

- Install software and set-up hardware (Session 1) – **April 15**
- Does on-orbit qPCR data match data on earth? (Session 2) – **April 19, 22, and 26**
 - No effect from microgravity related issues (i.e. convection)
 - Validate SmartCycler, Pipette Loader, tube loading and rotor functions
- Does the Sample Prep Module function correctly on-orbit? (Session 3) – **April 29**
 - All fluidic manipulations function properly
 - Prove out system with first sample type (*E. coli*)
 - Test system using on-orbit isolated RNA as input to SmartCycler
- Does system function correctly on-orbit with tissues? (Session 4) – **May 2**
 - All fluidic manipulations function properly
 - Prove out system with second sample type: mouse tissue

Flight results from each session will be compared to results from ground controls

Ground controls will be run with a 2-24 hour delay from the flight samples
Summary of qPCR QC Runs

- First two genomic DNA runs – April 19 and 22
 - Nominal operations
 - Good data from all tubes
 - Successful amplification
 - Data comparable to ground runs
 - Raw curves – qPCR works in microgravity
 - Flight data is noisy – to air bubbles?
 - Requested photos of tubes post-run

- Third genomic DNA run – April 26
 - Hardware anomaly in pipette loader
 - Many tubes were not hydrated (14/16)
• Pre and post-run photos were taken during last session:

• Applied boxcar averaging correction to both flight and ground data to reduce noise
Cycle Threshold (Ct) Comparison

• Good correlation of Ct’s between flight and ground; flight data has higher variance

First Run Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight</td>
<td>104%</td>
<td>0.962</td>
</tr>
<tr>
<td>Ground</td>
<td>105%</td>
<td>0.997</td>
</tr>
</tbody>
</table>

Second Run Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight</td>
<td>108%</td>
<td>0.987</td>
</tr>
<tr>
<td>Ground</td>
<td>103%</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Conclusions from QC Runs

• Data shows that qPCR works in microgravity
• Flight data has noticeable inflections in Ct curves
 – Attributed to air bubbles that form during the thermal cycling
• Slightly larger standard deviation in flight Ct values
• Good PCR efficiencies in flight: 104% and 108%
E. coli qRT-PCR Triplex Results

<table>
<thead>
<tr>
<th>Triplex</th>
<th>Flight Ct Value</th>
<th>Ground Ct Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnaK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>srlR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASGSR 2016
Mouse liver qRT-PCR Triplex Results

Ct Value vs. Flight and Ground conditions for Gapdh, Rpl19, and Fn1.
Conclusions from RNA Purification Runs

• Data shows that RT-qPCR analysis was successful in microgravity
 – RNA was successfully purified from both bacterial and mouse liver samples
• Successful Singleplex, Duplex and Triplex reactions from both bacterial and mouse samples
• Flight data has more variability than ground due to air bubbles

Follow up:
• Kate Rubins performed volunteer science activities over past month
 – First two tests were aimed at using COTS Smart Tubes to increase assay longevity
 – Data suggested a mitigation strategy to reduce air bubble formation
 – Strategy was tested successfully on 10-19
WetLab-2 Advantages

• Researchers can receive results less than 24 hours after experiment run
• On-orbit analysis is especially useful in cases where fixation or freezing of samples is problematic
• On-orbit data can be used to guide the experiment in real-time
 – On-orbit time-course results can be used to guide experiment actions
 – Allow researcher to change details (timeline, etc.) of future runs without need for sample return, ground analysis and re-flight
 – Provide indicators of best time to fix or otherwise conclude experiment
• System can be used to provide verification of results from ground analysis
• System can be used to produce purified RNA or DNA for analysis on the ground
WetLab-2 provides the following capabilities:

- Establishes a qRT-PCR analytical instrument on the ISS for research purposes
- Microgravity Sample Preparation of minimal complexity (RNA, DNA isolation) that can be completed on orbit

- Allow researchers to begin to utilize the ISS as a fully working laboratory
- Provide on-orbit analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health.
 - Will indicate if harmful bacteria are present in water supply, surfaces, etc.
 - Results would be available in as little as 90 min compared to current testing that takes 3-6 months due to the need for sample return

- On-orbit analysis has the potential to reduce the need for downmass
WetLab-2 Team

Management and Systems Engineering
- Julie Schonfeld
- Mark Mallinson
- Eddie Uribe

Science Team
- Eduardo Almeida
- Macarena Parra
- Jimmy Jung
- Luan Tran

S&MA
- Leonard Hee

Configuration Management
- Mike Henschke

Engineering
- Peter Tong
- Youssef Mohamedaly
- Tori Chinn

Fluidics
- Travis Boone

Software
- Matt Chin

Operations
- Nancy Rustemeyer
- Brett Stroozas

Logistics
- Francis Laxamana
- Satro Narayan

Finance
- Brian Flory

Manufacturing
- Emmett Quigley
- Ron Strong

PIM: Laura Holcomb
Ops POC: Jenna Ruddock
RIM: Melissa Wallace
RPM: Jennifer Scott Williams