Photonic Integrated Circuits
NASA Goddard Space Flight Center

Michael Krainak, Scott Merritt
AGENDA

* NASA Application Areas for Integrated Photonics
* Laser Communication Relay Demonstration (LCRD) modem
* Photonic Integrated Circuit (PIC) – Examples
* Direct-Write Waveguides, Machining, Patterning, Bonding…
* Our Early Stage Innovators
* Acknowledgements
NASA Applications:

➢ Sensors – Spectrometers - Chemical/biological sensors:
 ◦ Lab-on-a-chip systems for landers
 ◦ Astronaut health monitoring
 ◦ Front-end and back-end for remote sensing instruments including trace gas lidars
 ◦ Large telescope spectrometers for exoplanets.

➢ Microwave, Sub-millimeter and Long-Wave Infra-Red photonics:
 ◦ Opens new methods due to Size, Weight and Power (SWAP) improvements, radio astronomy and THz spectroscopy

➢ Telecom: inter and intra satellite communications.
 ◦ Can obtain large leverage from industrial efforts.
Laser Communications Relay Demonstration (LCRD)

Bridging the Gap to the Next Era of Space Communications
1.25 Gbps Downlink From ISS

50 Mbps Uplink To ISS

ISS terminal

1.25 Gbps Downlink From ISS

LCRD LRD 2019
A Vector For Directional Networking

NASA – Space Flight 2019:

- NASA-GSFC: Laser Communication Relay Demo
- Raw rate: 2.5 Gbps Differential Phase Shift Keying
- Developed in-house process for packaging fiber optic system for LCRD
- Laser transmitter/receiver for space payload & ground terminal
- Space terminal began fabrication in mid-2015
- Launch Readiness Date (LRD): 2019.

Space Modem (26”L x 6.3”H x 15.5”W)

Terrestrial commercial – Infinera (2014) Deployed in South Africa

5 x 114Gb/s Transmitter
442 Elements: AWG mux, lasers, modulators, detectors, VOAs, control elements

5 x 114Gb/s Receiver
171 Elements: AWG demux, local laser oscillator, 90deg Hybrid, Balanced detectors, control elements
NASA Space Communication and Navigation (SCaN)
Integrated LCRD LEO-User Modem and Amplifier (ILLUMA)

Provides pathway to near-Earth low-cost lasercom terminals

- Reduce Size, Weight, and Power (SWAP) plus Cost of spaceflight modems. Use integrated electronics/photonics where cost effective.
- Establish US industrial LEO space-flight modem suppliers compatible with LCRD
- Use vendor up-screened COTS parts where possible.
Transmitter front-end PIC DFB with Integrated MZ modulator (need high extinction ratio ~20 dB)
Comparison of integrated InP to LiNbO3

Monolithic Integrated InP Transmitters Using Switching of Prefixed Optical Phases

Guilhem de Valicourt, Haik Mardoyan, M. A. Mestre, P. Jennevé, J. C. Antona, S. Bigo, O. Bertran-Pardo, Christophe Kazmierski, J. Decobert, N. Chimot, and F. Blache
Monolithic Silicon Photonic Integrated Circuits for Compact 100+ Gb/s Coherent Optical Receivers and Transmitters

Po Dong, Member, IEEE, Xiang Liu, Senior Member, IEEE, S. Chandrasekhar, Fellow, IEEE, Lawrence L. Buhl, Ricardo Aroca, and Young-Kai Chen, Fellow, IEEE

(Invited Paper)

Fig. 3. Polarization-diversity coherent receiver using Si PIC. (a) Photonic circuit diagram. PBS: polarization beam splitter; PR: polarization rotator; TIA: transimpedance amplifier. (b) Photograph of the receiver PIC. PD: photo detector; IT: inverse taper; MMI: multimode interference coupler. (c) Photograph of the packaged coherent receiver. PCB: printed circuit board.
Erbium-doped spiral amplifiers with 20 dB of net gain on silicon

Sergio A. Vázquez-Córdova,1,2,* Meindert Dijkstra,1,2 Edward H. Bernhardi,1 Feridun Ay,1,2 Kerstin Wörhoff,1 Jennifer L. Herek,2 Sonia M. García-Blanco,1,2 and Markus Pollnau1,4

1Integrated Optical MicroSystems Group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2Optical Sciences Group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
3Department of Electrical and Electronics Engineering, Anadolu University, 26553 Eskişehir, Turkey
4Department of Materials and Nano Physics, School of Information and Communication Technology, KTH–Royal Institute of Technology, Electrum 229, Isafjordsgatan 22–24, 16440 Kista, Sweden
s.a.vazquezcordova-1@utwente.nl

Abstract:

Internal net gain = 20 dB

Noise figure of 3.75 dB small-signal-gain regime.
Fused Silica Witness Sample
Etched by Femtosecond Laser

Dielectric Breakdown of Air at Laser Focus

Fused Silica Witness Sample Etched by Femtosecond Laser

Goddard Code 554
Femtosecond Direct-Write laser
Direct-write laser system is multi-use

- Optical waveguides
- Precision Machining
- Patterning graphene
- Milling/Bonding/welding glass
- Glass/copper weld
- Additive manufacturing with laser sintering (3D printer principle)
Direct write waveguide fabrication

Figure 1. Ultrafast laser inscription setup: A femtosecond laser is tightly focused into the bulk of the sample, nonlinear breakdown occurs, which causes a localized material modification. By translating the sample with respect to the focal spot, arbitrary 3 dimensional structures can be inscribed.
Fig. 1. (a) Schematic of fs-laser inscription process in Yb:YAG ceramics for the double cladding waveguides, and their cross sectional microscope images, which consist of tubular central structures with 30 μm diameter, and concentric larger size tubular claddings with diameters of (b) 200, (c) 150 and (d) 100 μm, respectively.
Karen Bergman, Columbia University

Ultra-Low Power CMOS-Compatible Integrated-Photonic Platform for Terabit-Scale Communications

Seng-Tiong Ho, Northwestern University

Compact Robust Integrated PPM Laser Transceiver Chip Set with High Sensitivity, Efficiency, and Reconfigurability

Jonathan Klamkin, University of California-Santa Barbara,

PICULS: Photonic Integrated Circuits for Ultra-Low size, Weight, and Power

Paul Leisher, Rose-Hulman Institute of Technology

Integrated Tapered Active Modulators for High-Efficiency Gbps PPM Laser Transmitter PICs

Shayan Mookherjea, University of California-San Diego

Integrated Photonics for Adaptive Discrete Multi-Carrier Space-Based Optical Communication and Ranging
Acknowledgments

NASA STMD

NASA SCaN

DoD IP-IMI

AETD colloquium

Thank you!

Michael.A.Krainak@NASA.GOV

Scott.A.Merritt@NASA.GOV