Mitigating HZE radiation-induced deficits in marrow-derived mesenchymal progenitor cells and skeletal structure

Ruth K. Globus¹, Ann-Sofie Schreurs¹, Yasaman Shirazi-Fard¹, Masahiro Terada¹, Joshua Alwood¹; Bernard Halloran² and Candice Tahimic¹. ¹NASA Ames Research Center, Moffett Field, CA and ²University of California, San Francisco, CA

PROBLEM
Future long-duration space exploration beyond the earth’s magnetosphere will increase human exposure to space radiation and associated risks to skeletal health.

We showed previously that a diet supplemented with Dried Plum (DP) prevents short term bone loss caused by total body irradiation (Schreurs et al. Scientific Reports, 2016 Feb 11;6:21343).

HYPOTHESIS
DP diet mitigates persistent, damaging effects of HZE radiation on bone structure and marrow-derived osteoprogenitors and stem cells.

BACKGROUND
Bone remodeling: a balance between bone resorption by osteoclasts and bone formation by osteoblasts.

METHODS
Animals: Male C57Bl/6J mice, 16 wk old at time of total body irradiation (TBI) Study design: ZG2 study design: Control diet X Dried Plum (25%) and (60Gy-sham vs IR); Radiation: Total Body Irradiation (TBI); single exposure, > 50 Gy
-IR: 0.86 Gy/min
-Dual (1Gy total dose) Sequential: proton (0.25Gy)- Fe(0.5Gy)-proton(0.25Gy): E = 600 MeV/n
-LET: 6Fe(1Gy)
-TimeFrame: - prefused 14-21 days with control diet (CD) or Dried Plum diet (DP)
-Samples recovered 1d, 11d or 30d post TBI
Gene expression: qPCR
Statistics: data shown are Mean ± S.D., 1-factor or 2-factor ANOVA, Takey-Kramer post hoc

RESULTS
DP reduced expression of pro-osteoclastogenic cytokines 1d after TBI (137Cs)

DP reduced serum oxidative stress marker (serum TBARS) 11d days after TBI (137Cs)

DP prevented damage to marrow-derived osteoprogenitors 30d after TBI (56Fe)

SUMMARY/CONCLUSIONS
• DP diet fully protected radiation-induced bone loss from low LET or high LET radiation
 -relevance for spaceflight and radiotherapy
• Possible mechanisms for DP radioprotective effects:
 -mitigate early increase in pro-osteoclast cytokines
 -reduce oxidative damage, in bone and systemically
 -prevent damage to osteoprogenitors and mesenchymal stem cells

ACKNOWLEDGEMENTS
Research was supported by National Space Biomedical Research Institute grant #MA02501 (RKG, CL, JSA) under NASA cooperative agreement NCC 9–58, a DOE-NASA Interagency Award #DE-SC001507, supported by the Office of Science (BER), U.S. Department of Energy (RKG), and a NASA Postdoctoral Program fellowship (AS, JSA)