Trade-space Analysis Tool for Constellations (TAT-C)

Jacqueline Le Moigne, Philip Dabney, Olivier de Weck, Veronica Foreman, Paul Grogan, Matthew Holland, Steven Hughes, Sreeja Nag

NASA Goddard Space Flight Center, MIT, Stevens Inst. of Tech, BAER Institute

Definitions

A **Distributed Spacecraft Mission (DSM)** is a mission that involves multiple spacecraft to achieve one or more common goals.

A **Constellation** is a space mission that, beginning with its inception, is composed of two or more spacecraft that are placed into specific orbit(s) for the purpose of serving a common objective (e.g., Iridium).

Objectives

- Provide a framework to perform pre-Phase A mission analysis of Distributed Spacecraft Missions (DSM)
- Handle multiple spacecraft sharing mission objectives
- Include sets of smallsats up through flagships
- Explore trade-space of variables for pre-defined science, cost and risk goals, and metrics
- Optimize cost and performance across multiple instruments and platforms vs. one at a time
- Create an open access toolset which handles specific science objectives and architectures
- Increase the variability of orbit characteristics, constellation configurations, and architecture types
- Remove STK licensing restrictions

Science Requirements - Inputs

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Components</td>
<td>Includes mission components, including recurring, non-recurring, spacecraft bus, and payload</td>
</tr>
<tr>
<td>Instruments and Platforms</td>
<td>Includes instruments and platforms vs. one at a time</td>
</tr>
<tr>
<td>Science, Cost, and Risk Goals</td>
<td>Includes science, cost, and risk goals, and metrics</td>
</tr>
</tbody>
</table>

Science Requirements - Outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM Architectures</td>
<td>Generates DSM architectures for a mission</td>
</tr>
<tr>
<td>Coverage Metrics</td>
<td>Computes coverage metrics for instruments and platforms</td>
</tr>
</tbody>
</table>

Graphical User Interface (GUI)

- **Graphical User Interface**
 - TAT-C Mission Analysis
 - Proposed "TROPICS" Mission Analysis

Trade-space Search Iterator (TSI)

- TSI reads user inputs given to the GUI to create iterator inputs (JSON files).
- Uses default values from Landsat 8 (w/ ETM+ payload) if no inputs.
- Generates DSM architectures for a combination of variable values that satisfy iterator inputs.
- DSM architecture is a unique combination of variable values (altitude, inclination, FOV, number of satellites, etc.).
- For each arch, TSI creates files and sends commands to module ‘Reduction & Metrics’ to compute architecture performance and to module ‘Cost and Risk’ to compute architecture cost.

Orbit & Coverage Module

- **Purpose of Module**
 - Model orbits balancing accuracy and performance
 - Compute coverage metrics for constellation/sensor set
 - Compute ancillary orbit data for performance, cost, and risk
 - Development Approach

Reduction & Metrics Module

- Reduction & Metrics is responsible for calling module ‘Orbits & Coverage’ to propagate the orbit of every sat and compute coverage given payload specs.
- Reduction & Metrics integrates coverage and computes all performance metrics.

Cost & Risk Module

- **Motivation**
 - Constellations require that traditional cost estimating assumptions be challenged
 - Previous work highlighted limitations of existing models w/r to constellations
 - No comprehensive cost model for constellations has been developed
 - Implementation
 - Aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted, publically available models
 - Output: Proba density function showing most likely cost for mission lifecycle + selected mission components, including recurring, nonrecurring, spacecraft bus, and payload

Knowledge Base

- Centralized store of structured data readable by humans and machines
- Support TAT-C tasks:
 - Analysis: compose new mission concepts from existing model inputs
 - Exploration: discover new mission concepts by querying previous results
 - Layered client-server architecture over HTTP

Future Directions

- Various constellations
- Launch vehicle and manifest framework
- Various sensor models
- Add on/off maintenance abilities
- Comparative risk model
- Knowledge Base development
- Complete GUI/Visualization development