Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

Objectives

- Analyze climate data from past heat waves to develop temperature thresholds for heat wave hazard maps.
- Use thermal data from NASA satellites to derive high spatial resolution estimates of apparent temperature over selected urban regions.
- Identify and obtain relevant demographic data that can be used to identify “at risk” populations.
- Combine temperature data with demographic data to create a daily heat wave risk/hazard map.

Historical Heat Waves

Case studies of historical heat waves were used to develop “hot day” and heat wave criteria for the four selected cities. A “hot day” is defined as any day when the apparent temperature (a combination of ambient temperature and moisture) exceeds the 97th, 98th, or 99th percentile for high temperatures; it is considered a heat wave when two or more hot days occur consecutively. Over 20 years of summer temperature data from National Weather Service records was analyzed in order to determine these thresholds, which vary by city. The 97th, 98th, and 99th percentiles were used to identify mild, moderate, and severe heat waves (respectively) in past years, and can be useful for identifying and predicting future heat waves.

Defining Parameters

Socioeconomic census tract data was collected and mapped in ArcGIS to help identify possible populations at risk. The figures below show the spatial variation of the three parameters selected for the initial map over Atlanta, GA. Each parameter was downscaled from the original Census tracts to 30 meters using the nearest neighbor technique. A weighted overlay combined the three parameters to determine the risk level on a 30 meter scale. Since the third parameter, age, is likely not as significant as the other two factors in determining overall risk, it was given a weight of 20% while the other two were both weighted 40%.

Creating a Risk Map

Though risk varies over urban regions, there is ultimately no threat if there is no heat wave present. Land surface temperature data, mapped in ArcGIS at a 30 meter scale, identifies the hottest regions. The thresholds created from historical data can be used to identify heat waves.

Conclusions/Future Work

- This risk map, overlaid with LST data, serves as a prototype tool for identifying high-risk areas at a high spatial resolution.
- Development of a real-time product will alter the map based on daily temperature fluctuations.
- Eventual use by public health officials and the general public will allow for better monitoring of public health risk in extreme heat events over urban regions.
- Refinement of this approach may lead to global applications.

Acknowledgements

This work is being conducted under the auspices of the NASA Marshall Space Flight Center, Science Innovation Fund. We are grateful for the funding support provided by MSFC for this project.

Dale A. Quattrochi, Gary Jedlovec, Paul J. Meyer, Frank J. LaFontane

1NASA Earth Science Office, Marshall Space Flight Center, Huntsville, AL

2College of Natural Resources, Flagler College, St. Augustine, FL