Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

Michael F. Jasinski1, Jeremy D. Stoll†, William B. Cook+, Michael Ondrusek+, Eric Stengel† and Kelly Brunt‡

1Hydrological Sciences Laboratory, Code 617, NASA Goddard Space Flight Center, Greenbelt, MD 20771
michael.f.jasinski@nasa.gov

2Science Systems and Applications, Inc., Lanham, MD 20706

3Mesoscale Atmospheric Processes Laboratory, Code 612, NASA Goddard Space Flight Center, Greenbelt, MD 20771

4Center for Satellite Applications and Research NOAA National Environmental Satellite, Data, and Information Service, College Park, MD

5Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD

The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL’s high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.

ADDITIONAL INDEX WORDS: Lidar, inland water, coast, altimetry, ICESat-2, ATLAS, MABEL, photon counting, 532nm, light penetration, subsurface backscatter, solar background, significant wave height.

INTRODUCTION

Advancements in low energy (O[μJ]), high repetition rate (O[kHz]) lidar technology over the past several decades have generated strong interest in profiling surface waters from high altitude platforms, including orbiting satellites. Among the many improvements, perhaps the most useful has been the development of single photon counting detectors (Kraniak et al., 2010; McGill et al., 2002; Spinhirne, 1993). When coupled with a low energy, short pulse, laser transmitter, the technology offers the potential for improved performance and greater coverage of global terrestrial targets compared to traditional analog systems.

Background

Most lidar applications over the past several decades have focused on bathymetry, water surface height statistics, and biological activity using airborne scanning systems (E.g. Brock...
Bathymetric mapping generally includes coincident 532 and 1064 nm lidar, often in conjunction with hyperspectral imagery (Ackermann, 1999; Guenther, Tomas, and LaRocque, 1996; Krabill et al., 2002; Lillycrop, Pope, and Wozencraft, 2002) and high scan-rate systems such as the Experimental Advanced Airborne Research lidar (EAARL) (Bonisteel et al., 2009; McKeen et al., 2009; Nayegandhi, Brock, and Wright, 2009; Wright et al., 2014) and the Scanning Hydrographic Operational Airborne Lidar Survey SHOALS (Lillycrop, Irish, and Parson, 1997; Irish and Lillycrop, 1999). Both high and low energy commercial systems are employed depending on environmental conditions. High energy systems that offer deep penetration but sparse pixel spacing include the Hawkeye II (Tullhahl and Wikstrom, 2012), the Laser Airborne Depth Sounder (LADS) MK3, and the Coastal Zone Mapping and Imaging Lidar (CZML) (Feygel et al., 2012; Fuchs and Mathur, 2010) systems. Low-altitude systems (< 3000 m above ground) typically employ approximately 250 m swath widths 200–700 m above ground yielding vertical accuracies of 15 cm over 1 m spatial scale.

Low energy commercial systems, suitable for shallow water and high spatial density observations include EAARL (Wright and Brock, 2002), Rieg VQ-880 series (Phennigbauer et al., 2011), Optech’s Aquarius (Pan et al., 2015), and the High-Resolution Quantum Lidar System (HRQLS) (Degnan et al., 2011). Example experimental low-energy photon-counting systems include the low altitude Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL) (Dabney et al., 2010; Harding et al., 2011) and the high altitude (20 km above ground) Cloud Physics Lidar (CPL) (McGill et al., 2002). The photon counting systems, when combined with smaller telescopes and the elimination of automatic gain control, offer up to two orders of magnitude greater receiver performance than analog lidars (Krania et al., 2010).

Space based retrievals of water properties have evolved over the past two decades. The first generation Geoscience Laser Altimeter System (GLAS) aboard ICESat-1 (Abshire et al., 2005) consisted of a single beam, low repetition rate (0.1 [Hz]), high pulse energy (0.1 J) lidar with an approximately 70 m footprint and along track spacing of about 170 m. Inland water observations were successfully explored with accuracies in the cm to decimeter range, and its height products were used in a number of both lake and river studies (e.g. Birkett et al., 2010; Calmant, Seyler and Cretaux, 2008; Harding and Jasinski, 2004; Zhang et al., 2011a, 2011b). Future mission concepts, in addition to ICESat-2, that will employ photon counting detectors include the Lidar Surface Topography (LIST), the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), the Aerosols-Clouds-Ecosystem (ACE) missions.

In addition to range determination, the analysis of satellite observed specular reflectance has allowed retrieval of additional water properties (E.g. Barrick 1968; Bufton, Hoge, and Swift; 1983; Menzies, Tratt, and Hunt, 1998; Lancaster, Spinhirne, and Palm, 2005). Lancaster, Spinhirne, and Palm (2005) used the near nadir ICESat GLAS reflectance to estimate ocean surface albedo. Menzies, Tratt, and Hunt (1998) were the first to examine sea surface directional reflectance and wind speed using the LITE instrument aboard the space shuttle. Hu et al. (2008) examined surface wind speed variability using NASA’s Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) backscatter data employing the Cox and Munk slope variance – wind speed relations. Several satellite lidar studies over oceans have focused on wind speed retrieval that relies on knowledge of backscatter distribution from wave slope facets (E.g. Hu et al., 2008; Lancaster, Spinhirne, and Palm, 2005; Menzies, Tratt, and Hunt, 1998). CALIOP observations over Tampa Bay also were used to investigate subsurface scattering (Barton and Jasinski, 2011).

The analysis of lidar returns from photon counting systems is, in many ways, similar to analysis using analog systems (E.g. Churnside, Naugolnykh, and Marchbanks, 2014; Guenther, 1985; Guenther, LaRocque, and Lillycrop, 1994). A principal difference is that, instead of analyzing a full waveform return from a single pixel illuminated by a high energy analog pulse, an equivalent, but not identical, histogram must first be generated from along track returns. The required track length depends on surface reflectance, atmospheric conditions, and solar background. In general, aggregations of at least 100 signal photons are sufficient for mean height analysis (Jasinski et al., 2015). For dark targets such as water, experience with MABEL indicates that about 0.5 to 1 signal photons per meter are returned (Jasinski et al., 2015). Range is measured from the time difference in between the laser pulse and the reflected light. Return intensity provides information on target characteristics. Factors affecting signal performance include Fresnel scattering from the water surface, water volume scattering and absorption, clouds, solar background, and bottom reflectance. While conceptually simple, execution requires precise measurements and timing. Optical water clarity is the most limiting factor for depth detection (Sinclair, 2008). In general, lidar technology can detect light down to about three times the Secchi depth (Estep, Lillycrop, and Parson, 1994; Sinclair, 1999) under ideal conditions. Recommended guidelines to achieve optimal performance include flying at night, low wind conditions, clear water, low altitude, and maximum sounding energy (Sinclair, 2007). Analysis of data from high altitude aircraft platforms must also account for atmospheric scattering and delay and for aircraft pitch, role and yaw perturbations. Procedures to compare the various lidar waveform processing algorithms of different systems are available (Parrish et al., 2011; White et al., 2011).

ICESat-2 ATLAS Mission

The soon to launch Advanced Topographic Laser Altimeter System (ATLAS) is the only instrument on the polar-orbiting Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission. ICESat-2 is a Tier 1 mission recommended by the National Research Council (NRC, 2007). Its principal objectives are to quantify polar ice sheet contributions to sea level change and the linkages to climate conditions, quantify regional signatures of ice sheet changes, estimate sea ice thickness from freeboard measurements, and quantify and map vegetation height over a two year period (Abdalati et al., 2010). However, the ICESat2 mission also will develop inland water and ocean data products. The Inland Water data product, or ATL13, will consist of principally the mean and standard deviation of water surface height for ICESat-2 transects over global lakes, rivers, and near coastal regions.
ATLAS is configured as a six-beam laser altimeter utilizing a high repetition rate (10kHz), short pulse width, 532 nm laser transmitter with photon-counting detectors, as shown in Figure 1. The spacing is configured to observe local cross slope within a beam pair, and wide spatial coverage between the three sets of pairs. Each beam pair consists of a comparatively low energy (40 µJ) and strong energy (121 µJ) beam, to better observe the full dynamic range of dark (water, vegetation) and bright (snow, ice) targets, respectively (McGill et al., 2013; Zwally et al., 2011, McGill et al., 2012).

ICESat-2/ATLAS is thus significantly different than its predecessor, ICESat/GLAS that fired at a much lower rate (40 Hz) but employed ~80 mJ lasers for full waveform detection (Abshire et al. 2005; Schutz et al., 2005). In addition to the higher repeat frequency, ATLAS will offer near-continuous 0.70m ground spacing with approximately 14m footprints compared to GLAS’s 170m spacing and 70 m footprints. Each returned photon will be time-tagged with a vertical precision of approximately 30 cm, depending on surface and atmospheric characteristics (personal communication, Thomas Neumann, ICESat-2 Project Office). ATLAS also utilizes a narrower instrument FOV to limit the observation of solar photons. The ATLAS system will thus provide higher measurement sensitivity with lower resource requirements. A summary of ATLAS parameters is shown in Table 1.

Table 1. Summary comparison of the principal ATLAS and MABEL instrument parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ATLAS</th>
<th>MABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational altitude</td>
<td>500 km</td>
<td>20 km</td>
</tr>
<tr>
<td>Wavelength</td>
<td>532 nm</td>
<td>532 and 1064 nm</td>
</tr>
<tr>
<td>Telescope diameter</td>
<td>0.8 m</td>
<td>0.127 m</td>
</tr>
<tr>
<td>Laser pulse repetition</td>
<td>10 kHz</td>
<td>5-25 kHz</td>
</tr>
<tr>
<td>frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser pulse energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong beam</td>
<td>121 µJ</td>
<td>5-7 µJ per beam</td>
</tr>
<tr>
<td>Weak beam</td>
<td>30 µJ</td>
<td>5-7 µJ per beam</td>
</tr>
<tr>
<td>Mean Pulse Width</td>
<td>< 1.5 ns</td>
<td>< 2.0 ns</td>
</tr>
<tr>
<td>(FWHM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser footprint diameter</td>
<td>14 m</td>
<td>100 µrad (2 m)</td>
</tr>
<tr>
<td>Telescope field of view</td>
<td></td>
<td>210 µrad (4.2 m)</td>
</tr>
<tr>
<td>Swath width</td>
<td>3.3 km</td>
<td>Up to 1.05 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>94 deg</td>
<td>N/A</td>
</tr>
</tbody>
</table>

An additional unique feature of ICESat-2 is its two orbit modes. Above approximately +/-65 deg latitude, ATLAS will operate in a repeat track mode over designated reference tracks similar to ICESat in order to obtain continuous time series of ice sheet change along those tracks. Below +/- 65 deg, however, ICESat-2 will systematically point left or right off the reference tracks in subsequent orbits, in order to conduct a two year global mapping of vegetation. Additional scheduled off-pointing also is planned to observe targets of opportunity and calibration/validation sites.

MABEL Prototype Instrument

The Multiple Altimeter Beam Experimental Lidar (MABEL) was built as a high altitude prototype of the ATLAS instrument (McGill et al. 2013), but possessing additional beams and flexibility to test variations in the ICESat-2 concept. In this capacity it serves several purposes including validation of ICESat models of instrument performance, evaluation of the photon counting system in the 532 nm band, providing experiment data over actual ICESat-2 targets, and development of retrieval algorithms of ICESat-2 data products. From 2012 through 2015, major flight experiments were conducted in Greenland, the east coast United States, the western US, and Alaska. In all these experiments, MABEL was flown aboard either the ER-2 or Proteus Aircraft, at 20 km or above 95% of the Earth’s atmosphere. The high altitude platform more realistically replicates the impact of clouds that ICESat-2 will encounter, and that will need to be addressed in the retrieval algorithms.
A summary comparison of the relevant ATLAS and MABEL instrument parameters is provided in Table 1. A unique feature of MABEL is that it possesses much flexibility in the configuration of several main lidar parameters. For example, it possesses up to 16 active channels at 532 nm and 8 at 1064 nm with changeable viewing angles, as shown in Figure 2. Laser repetition rate can be varied from 5 to 25 Hz. At 5 kHz and at an aircraft ground speed of 200 m/s, a pulse is thus emitted every 4 cm. Laser mean pulse width is 2 ns.

Aim of this Study
The purpose of the present study is to analyze MABEL along track profiles of water surface height over inland and near shore waters, and to evaluate what features can be derived from the ICESat-2/ATLAS instrument. The analysis is pertinent in the development of planned retrieval algorithms for the ICESat-2 Inland Water Body Height data product (ALT13). However, they cannot be derived without considering additional processes that affect the retrieval, including the subsurface backscatter from the water column, the impact of a possible bottom signal in shallow areas, and meteorology. Analyses of the five cases reported herein serve to evaluate both the feasibility of the ATLAS photon-counting lidar system for water surface profiling and to define the quality limits of the ALT13 data product.

METHODS
From 2012 through 2015, the ICESat-2 Project conducted several high altitude MABEL flights aboard the ER-2 and Proteus aircrafts. These flights were planned as dedicated experiments for inland water targets recommended by the ICESat-2 Science Definition Team (SDT). Where available, flights lines were designed to pass over buoys that supported a number of in situ instruments that measured water surface height and water quality data.
where \(p_\text{d} \) equals the observed lidar signal photon density (m\(^2\)) as a function of depth, \(d \), and the denominator represents mean sum of all background noise densities (m\(^2\)) including solar background, \(p_\text{s} \), lidar background, \(p_\text{b} \), and dead count, \(p_\text{dc} \). Mean background density, constant throughout the vertical column, was computed as the mean number of photon counts in the atmosphere above the water surface, per meter depth per meter transect (m\(^2\)). During daytime, the background consists mostly of solar backscatter. At night, the background density drops significantly and is primarily due to lidar backscatter.

Because both the total observed return and the mean background can be computed directly from the observed vertical profile, and because the background can range over several orders of magnitude, Equation 1 is more conveniently rewritten as

\[
LSBR(d) = \frac{L_0 g_{10}(p_\text{d}(d) + p_\text{s} + p_\text{b} + p_\text{dc})}{p_\text{s} + p_\text{b} + p_\text{dc}} - 1
\]

(2)

where the numerator in the brackets represents the total return observed by MABEL including both signal and background photons. Prior to computing \(LSBR(d) \), a vertical histogram of the total return is created at 0.05 m bin increments using all water photons observed along flight path. The mean background in the denominator is estimated from observed atmospheric photons. \(LSBR(d) \) is computed and smoothed employing a 0.5 to 1.0 m moving average as necessary depending on the specific site.

RESULTS

The current analysis examines three MABEL datasets of coastal and inland water observed during 2012 to 2014, focusing on along track surface water height, light penetration into water under a range of atmospheric and water conditions, and near shore bottom topography. Sites include the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead.

Site 1: Middle Chesapeake Bay

The two Chesapeake Bay transects are shown in Figure 4. They represent contrasting day and night open water cases with moderate wind and turbidity with mostly clear sky conditions. Both transects consist of a one minute acquisition along nearly identical 8 km reaches in the middle of the bay near NOAA’s Gooses Reef buoy. The September 22, 2012 flight occurred during late evening local time and the September 25, 2013 flight during midday local time. There were no land crossings and water depth was greater than 10 m.

Plots of the georeferenced MABEL photon cloud returns from the atmosphere through the water column with respect to the WGS84 Geodetic height are shown in Figures 5a and b. The plots consist primarily of i) background photons throughout the atmosphere and water column, ii) a concentrated band of photons of about a meter wide representing the water surface and iii) an additional band of subsurface backscattered photons extending a few meters below the water surface and diminishing with depth. The above profiles are typical of most MABEL water transects.

Table 2. Summary parameters of the MABEL experiments

<table>
<thead>
<tr>
<th>Site</th>
<th>Ches Bay</th>
<th>Ches Bay</th>
<th>Ches Bay</th>
<th>VA Beach</th>
<th>Lake Mead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
<td>2013</td>
<td>2015</td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>Date</td>
<td>Sep-22</td>
<td>Sep-25</td>
<td>Sep-25</td>
<td>Sep-20</td>
<td>Feb-24</td>
</tr>
<tr>
<td>Time</td>
<td>UTC</td>
<td>16:51-23:00</td>
<td>15:33-23:00</td>
<td>09:51-23:00</td>
<td>16:51-23:00</td>
</tr>
<tr>
<td>LSBR(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In-situ Observations

| Key Conditions | Clear | Partly | Mostly | Most
The plots indicate notable differences in background rates, surface signal photon rates, and SBR penetration between the two dates. The 2012 late evening flight exhibits an almost negligible background rate of 0.00002 m$^{-2}$ for this nighttime flight. The 2013 mid-day flight, however, exhibits variable background along the flight line, shown in Figure 5b and in an expanded view in Figure 6, with a moderate background rate of 0.011 m$^{-2}$ between a distance 2000 and 4300m, followed by a low background rate of 0.0053 m$^{-2}$ over the distance 4300-6300m. The different backgrounds for the same 2013 transect represent differences in cloud cover within the instrument field of view. Clouds increase the solar scattering while at the same time reduce the lidar surface signal.

Analysis also indicates that for the 2013 Chesapeake cases, that occurred during daytime within a minute of each other, nearly four times as many water surface photons were detected, or 2.20 m$^{-1}$ versus 0.56 m$^{-1}$, in the low background segment compared to the moderate segment, respectively. As indicated in Figure 5b, however, the moderate background segment still easily possesses sufficient photons to clearly define the water surface.

The $LSBR(d)$ profiles of the Chesapeake cases, shown in Figure 7, indicate the observable limits of MABEL’s subsurface volume scattering. Results indicate that the $LSBR(d)$ profile for 2013 decays faster for the moderate background segment compared to the low background 2013 case. The observable penetration of both 2013 cases is less than the 2012 Chesapeake case, indicating greater observability at night when there is no solar background.

For quantitative comparison of the observable MABEL penetration, it is useful to choose a threshold level, say $LSBR_0$, representing the depth at which the signal to noise ratio equals one or $Log_{10}(SBR)$ equals 0. Results shown in Table 2 and Figures 6 and 7 indicate that $LSBR_0$ equals1.3 m and 3.7 m for the 2013 moderate and low backgrounds, respectively, despite having the same turbidity of 2.9 NTU. As defined, MABEL’s observable $LSBR_0$ depth is not only a function of the intrinsic properties of the water but also the relative intensity of the incident signal photons compared to the background. Lower background makes it easier to discern a given signal strength. For the 2012 late evening case, this observable depth or $LSBR_0$ equals 6.8m, a much deeper depth, resulting largely from the very low background.

Once $LSBR_0$ is defined, the attenuation of the MABEL subsurface backscattered signal can be explored, modeled as an exponential decay with depth. The water penetration of a 532 nm laser beam has been shown to decrease exponentially proportional to the diffuse attenuation coefficient (Guenther, 1985; Feygels et al., 2003). MABEL analyses yielded attenuation coefficients of $\alpha_{532} = 0.91 \text{ m}^{-1}$ ($R^2 = 0.53$) and 0.56 m^{-1} ($R^2 = 0.84$) for the moderate and low background cases, respectively. Lower R^2 generally occurs with the smaller $LSBR_0$ depth as there are fewer data to fit the subsurface decay. In situ measurements of diffuse
solar light at 532.2 nm also were made along the 2013 transect using a free falling HyperPro II by Satlantic. Data were averaged over three casts for each location. The mean of the upwelling and downwelling diffuse attenuation coefficients were $K_{532} = 0.45 \text{ m}^{-1} (R^2 = 0.99)$ and $0.52 \text{ m}^{-1} (R^2 = 0.99)$ for the moderate and low background cases, respectively. The estimated MABEL-based attenuation is thus slightly higher with a lower R^2 than the in situ results. Error sources include difference in instrumentation, spatial variability in water turbidity over the length of the transect, and some difference in the precise time of acquisition.

Site 2: Atlantic Ocean Near Virginia Beach

The second site analyzed was an East-West transect extending from the Atlantic coast at Virginia Beach, just south of the mouth of the Chesapeake, eastward into the Atlantic on September 19, 2013 at 22:30 UTC (late afternoon local time). Figure 8 shows the transect location map which is situated just south of the mouth of the Chesapeake Bay. A 20 second segment of about 2000 MABEL photons is plotted in Figure 9. For this date, sky conditions were mostly clear, and wind from the East at 4.2 m/s. One additional feature not seen in the Chesapeake Bay cases is evidence of some wave structure throughout the transect. This is attributed to the MABEL flight being aligned nearly parallel to the wind direction.

Further, although a distinct bottom is not identified even near the shore, evidence of an approximate implied bottom may be possible since only noise photons appear below the actual bottom. Drawn on Figure 9 is an estimated envelope of MABEL’s subsurface signal photons in the vicinity of the shore. The envelope suggests that the water depth extends up about 4 m at a distance of about 200 m from shore. Although precise measurements of bathymetry were not recorded at the time of the MABEL flight, the depth of the envelope curve is consistent with current bathymetric soundings available from the National Ocean Service Hydrographic Data Base, NOAA National Centers for Environmental Information (See https://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html).

Also plotted on Figure 9 is the $LSBR_0$ depth estimated to be about 9.3m. This comparatively high penetration is attributed to a combination of the lower turbidity of 2.2 NTU compared to the Chesapeake Bay cases, and a low background rate of 0.0003 m$^{-2}$. The attenuation coefficient is estimated to be $\alpha_{532} = 0.55 \text{ m}^{-1} (R^2 = 0.95)$.

Figure 8. Location map of high altitude MABEL flights over Site 2, Atlantic Ocean near Virginia beach. Base map from Google Earth.

Figure 9. Along track profile of MABEL observed photons for Site 2, Atlantic Coast at Virginia Beach. $LSBR_0$ depth indicated at 9.3m below surface.

Figure 10. Histograms of the water surface photons for Site 2, Atlantic Ocean at Virginia Beach, for (a) the raw MABEL data and (b) estimated true surface distribution after deconvolution. The mode of the deconvolved distribution was plotted to match that of the MABEL data.
A vertical histogram of the water surface height computed from the aggregated along track MABEL photon elevations is shown in Figure 10. Photon heights are plotted with respect to the WGS84 Ellipsoid. Orthometric heights using the EGM96 Geoid are also provided in Table 1. This histogram may not represent the true statistical distribution of the surface photons as the effect of the instrument impulse response is convolved with the returned signal. The ICESat-2 ATL13 Inland Water Height Data Product algorithm deconvolves the MABEL signal, providing an estimate of the true representation of the distribution of the surface variability also shown in Figure 10. The estimated water surface height distribution for the Site 2 case yields a standard deviation of 0.21 m. The mode of the estimated distribution was plotted to match that of the raw MABEL data.

Site 3: Lake Mead

This case represents a night flight over a relatively clear water body with turbidity equal to 1.6 NTU. The MABEL overpass of February 24, 2012 transected the western portion of Lake Mead in a Southwest to Northeast direction as shown in Figure 11. The transect represents two granules of data, or about 2 minutes of acquisition covering about 24 km.

The corresponding plot of the MABEL photons are shown in Figure 12 with the Southwest corner of the lake is on the left. During the flight approximately 91,000 photons were recorded. Because of the nighttime and clear sky conditions, there was an extremely low background count of 0.00008 m$^{-2}$. Several features are clearly identified. First, starting at the edge of the lake and traversing across, several islands are noted. To the far right of the figure, after passing over a large island nearly 60m high, the aircraft reaches the edge of the lake. Subsurface backscatter results in an estimated $LSBR_0$ depth of 9.2m. The attenuation coefficient is estimated to be $\alpha_{532} = 0.37$ m$^{-1}$ ($R^2 = 0.73$).

Unlike the previous cases, the bathymetry of Lake Mead is very apparent in the vicinity of many of the shorelines of the lake edges and islands. To see this more clearly, an expanded view of the photons is plotted in Figure 13 for the southwest shore. Prior to plotting, data were first processed to remove an instrument after pulse at about 1.4m depth. The near-shore bottom of the lake is observed as an extension of the shoreline to a depth of nearly 9 m. The corresponding histograms of the surface and subsurface photons are shown for an open water stretch of 2 km in Figure 14a and a near shore stretch of 100 m in Figure 14b. In the open water segment, the water depth is much greater than the $LSBR_0$ depth of 9.2 m and no bottom signal is detected. For the near shore profile, a bottom bump in the histogram is clearly identified at about a depth of 2m. Although a detailed map is not available, these results are consistent with the NOAA Nautical Chart 18687 of the National Ocean Service Coast Survey (See E.g. http://www.oceangraphix.com/chart/zoom?chart=18687)
DISCUSSION

The five different cases over three sites presented here cover a range of atmospheric and water states for evaluating the high-altitude prototype MABEL system. From the perspective of water surface height profiling, several parameters were computed for each case including background rate, rate of detected water surface signal photons, \(\text{LSBR}_0 \), water surface height standard deviation, and vertical height precision, and the MABEL subsurface attenuation coefficient. These parameters, summarized in Table 2, provide insight on what photon counting can offer in inland and near-shore water bodies as well as the anticipated performance of ICESat-2.

For instance, the mean signal rate is critical to evaluating measurement precision of the ICESat-2 Inland Water Height data product. For the present analysis, water surface photons detection ranged from 0.36 m\(^{-1}\) over the Chesapeake Bay in 2012 to 2.9 m\(^{-1}\) over Lake Mead during 2012. Although the lower return rates are generally associated with clouds and haze, some of the low rates may have been associated with low MABEL pulse energy for the different flights.

For the Virginia Beach case, mean heights of water surface photons have been aggregated in approximately 100 m segments, as shown in Figure 15. Given its water signal rate of 0.41 m\(^{-1}\) and assuming a vertical precision of 30 cm/photon (personal communication, Thomas Neumann, ICESat-2 Project Office), the approximate vertical precision of each 100 m segment can be estimated as,

\[
\text{Precision of 100m segment} = \frac{30}{\text{water signal rate} \times 100m}
\]

or 4.7 cm. Using the water signal photon rate from Table 2 for the other cases, the estimated vertical precision ranges from about 1.8 cm over Lake Mead where signal density is highest to 5.0 cm for the 2012 Chesapeake Bay flight where density is lowest. Other factors associated with instrument pulse strength, orbit pointing and atmospheric delays may alter the error of an additional few percent.

Additional important relationships are related to the standard deviation of wave height, \(\sigma_h \), such as the significant wave height, \(H_{1/3} \), that represents the mean wave height (trough to crest) of the highest third of the waves. Computation of the standard deviation of MABEL’s along track surface photon height ranged from 0.065 m from the September 2013 flight to 0.21 m for the September 2013 Virginia Beach case. A plot of the in situ significant wave height reported using NOAA buoy data, versus the mean standard deviation of water height calculated from the MABEL data, is shown in Figure 16. The slope yields the relationship, \(H_{1/3} = 4.79 \sigma_h \), only slightly higher than the generally accepted value of 4.0 used to estimate the significant wave height (Holthuijsen, L., 2007). No corrections to possible observation bias were made.

Figure 15. Same as Figure 9 with the addition of the approximate ATL13 data product consisting of aggregated (100 photon) water surface height segments for Site 2, Atlantic Coast at Virginia Beach.

Figure 16. Measure in situ NOAA buoy significant wave height, \(H_{1/3} \), versus standard deviation of MABEL surface water height observation \(\sigma_h \), for Chesapeake Bay and Virginia Beach cases. Slope is close to 4.0 used in the definition of significant wave height.

From the perspective of MABEL use for bathymetry, only the Lake Mead case that had the lowest turbidity of 1.6 NTU showed a definitive bottom signal in multiple near-shore locations. The solar background was also the lowest at 0.0003 m\(^2\), yielding a...
LSBR₀ depth of 9.2 m. Analysis of the current data sets indicates no global relation between SNR and turbidity across all the cases studied. Examination of other Chesapeake data sets, however, not presented herein, yielded other examples of near-shore examples of bottom topography, however, they were not as clear as the Lake Mead case. The results confirm the difficulty of observing bathymetry in the narrow, near shore shallow zone using low energy photon-counting systems. Practical future use of ICESat-2 for mapping bathymetry is thus best achieved for clear water bodies, up to several NTUs, and only along the prescribed satellite reference tracks.

Finally, in analogy to the often used relation between the Secchi Disk Depth (SDD) and Photosynthetically active Radiation (PAR) attenuation or SDDxKₚα =constant (Poole and Atkins, 1929;), it can be shown using the MABEL findings in in Table 2 that

\[
LSBR₀ \times α_{532} = 3.3 \quad (4)
\]

Although not equivalent, the analogous results fall within a reasonable range of 1.7 to 4.95 reported by Gallegos, Werdell and McClain, 2011.

CONCLUSIONS

MABEL was designed as a high altitude prototype of the ICESat-2 ATLAS sensor, and thus the results presented here can be expected to be similar those retrieved from space. The analyses of five data sets over the three near-shore MABEL experiment sites thus provide an opportunity to understand the performance of the anticipated ICESat-2/ATLAS mission and the viability of global inland and coastal surface water height data product. The ICESat-2 project will implement a calibration/validation plan during the project life cycle, and performance will be periodically reviewed. The plan will include targeting additional high latitude lakes not analyzed here.

Analysis of the high-altitude MABEL observations using the ATL13 Inland Water Height Data Product algorithms demonstrated the capability of retrieving along track mean and standard deviation of water surface height under non and partly cloudy conditions. Such height products would be especially beneficial in remote global regions not easily accessible by aircraft. ICESat-2’s low repeat coverage in the low and mid latitudes during its first two years after launch, however, would limit its use in many operational applications. Higher latitude regions would benefit to a great degree due to a combination of close reference track and cross over analysis.

A simple method for determining the observable penetration of the 532 nm beam has been defined in terms of the SBR(d) penetration profile. The \(LSBR₀ \) is a useful parameter for estimating the range of observable depth over which attenuation can be modeled. The capability to observe bottom signals has been shown to be feasible, but only under the most favorable atmospheric and water optical conditions.

While additional research is required, the overall results suggest that the retrieval of surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100m, even in partly cloudy conditions. Mean water surface height precisions of approximately 5-10 cm per 100m segment length may be achievable.

For the subsurface, the results indicate that the low energy MABEL system can profile up to about one Secchi disc depth (SDD) under clear skies. For homogeneous water body surfaces, deeper penetrations may be achieved by analyzing longer flight segments of several hundred meters or more.

ACKNOWLEDGMENTS

This work was supported by the NASA Cryosphere Program through the ICESat-2 Project Office, and also the Goddard Space Flight Center Strategic Support. We acknowledge the MABEL instrument and flight support team including Eugenia DeMarco, Dan Reed, and the ICESat-2 project scientists including Thorsten Markus and Thomas Neumann, the advice provided by David Harding of GSFC’s Planetary Geodynamics Laboratory. Figures 1 and 2 were provided by the ICESat-2 Project Office. We are especially grateful to the NOAA NESDIS Center for Satellite Applications and Research for conducting the 2013 field experiment in the Chesapeake Bay, and also two anonymous reviewers who whose careful review and suggestions substantially improved the manuscript.

LITERATURE CITED

