Earth Science Data Analytics/Science Skills Needed:
Overall Experiences /Operational Needs

Data Analytics / Data Science
- Need skills in: mathematics, numerical modeling, statistics, software, engineering and the ability to integrate data across multiple domains.
- Need expertise in tools and techniques: rule learning, classification, cluster analysis, data fusion, machine learning, neural networks, anomaly detection, modeling, time series analysis, visualization.

Operational Needs
- Need to facilitate making data more useful.
- Should be interdisciplinary from the start.
- Learn your math and statistics.
- Know the importance of the data lifecycle.
- Understand what the data says and how to understand the data.
- Know the territory: What information is available. Where to get it. How is it generated. How to use it. How it can be used.
- Understand data, metadata, and data integration.
- Know how to apply the techniques to the discipline.
- Learn through internships.

General Experiences
- Need skills in: data scientist, data fusion, machine learning, neural data across multiple domains. The role is a hybrid one.
- Once acquired, it becomes up to the individual to determine how best to use these skills, based on their interest and aptitude.

What the Universities Offer (July, 2016 study and comparison with 2013 Study)

Program Focus Areas

<table>
<thead>
<tr>
<th>Program Focus Areas</th>
<th>B.S. online</th>
<th>B.S. campus</th>
<th>M.S. online</th>
<th>M.S. campus</th>
<th>PhD online</th>
<th>PhD campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business analytics</td>
<td>0</td>
<td>22</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data/Information science</td>
<td>15</td>
<td>10</td>
<td>21</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data analytics/Statistics</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quantitative Analysis/Applied Statistics</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information technology/systems management</td>
<td>4</td>
<td>19</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer science</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health/Bio analytics</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business management</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Informatics</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relevant Courses Most Offered in 2013 and 2016

List of Interdisciplinary, Heterogenous Data!
- Scientists spend 30% of time programming, but 80% are self-taught.
- Unlike laboratory and field equipment, software is often not carefully validated.
- Computing errors can have disproportionate impacts on scientific process.

my perspective on what Earth Science Needs (from Data Science)
- Repeated Exposure
- Sharing of Vocabulary
- How, Where, When and Who to Find/Ask for Resources & Help
- Sharing of Community: "both ways" Communication

Summary Table of Best Practices

1. Offer programs that people want to learn.
2. More student training and professional development.
3. Offer programming skills training.
4. Offer project-based learning.
5. Do not hesitate to introduce new technologies.
6. More collaborative opportunities.
7. More cross-disciplinary training.

What Else Universities Should Consider Offering

- Ability to integrate data across multiple domains
- Support domain scientists with data and computational needs to communicate across domains (be interdisciplinary)
- Knowledge of data life cycle
- Software engineering - Programming

Program Pertaining to Data Science/Data Analytics: Course Topics Most Offered

- Statistics, Data Mining, Database Management, Analysis
- Data Science, Data Analytics, and Computer Science
- Data Mining, Mathematics, Statistics, Machine Learning, Data Visualization

Data Science, Data Analytics, Information Systems

- Database Management/Analysis
- Quantitative Analysis:
 - Data Mining, Mathematics, Statistics

Other Relevant Courses Offered:
- Programming, Neuro Networks, Data Analysis, Artificial Intelligence, Clustering, Time Series, Data Warehousing, Pattern Recognition, GIS, Remote Sensing, Text Mining, Information/Knowledge Management

Data Analysts/Science Techniques Practiced

- Ability to integrate data across multiple domains
- Support domain scientists with data and computational needs to communicate across domains (be interdisciplinary)
- Knowledge of data life cycle
- Software engineering - Programming

Every Earth science program should contain training in Data science/analytic and Programming