Solar filaments mainly consist of relatively cool plasma that is suspended in the solar corona. They are known as solar prominences when they are seen on the limb of the Sun. Filaments form above polarity inversion lines (PILs), that separate positive and negative magnetic flux on the photosphere. Filaments can be classified based on whether they are located on the Sun. Active region filaments are found in and out of active regions, intermediate filaments are found between the boundaries of active regions and the quiet Sun, and quiescent filaments are found on the quiet Sun. All types of filaments can erupt, leading to Coronal Mass Ejections (CMEs). The eruptions release a large amount of stored magnetic energy via reconnection. The eruption of a filament can be ejective or confined. Ejective eruptions produce CMEs, confined eruptions do not. Many eruptions begin with a slow rise of the filament followed by a fast rise. The tether cutting model of filament eruptions explains how filament eruptions might occur due to flux cancellation or reconnection along the PIL at the site of reconnection between two opposite elbows of a sigmoid field holding the filament.

Methodology
We used Extreme UltraViolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study ten different filament eruptions and their photospheric magnetic fields present and study the analysis of two filaments, an intermediate filament that erupted at 16:00 UT on May 4, 2013 (B 9.0 class flare) and a quiescent filament that erupted at 16:54 UT on January 26, 2016 (class flare). We used and high temporal cadence (45s). The images and magnetograms were downloaded by using data from AIA and SDO/HMI, including the two filaments.

Discussion
• We studied ten filament eruptions by using data from SDO/AIA and SDO/HMI, including the two filaments featured here.
• Our work supports that continuous flux cancellation contributes to the eruption of the filaments.
• Both filaments first show a slow-rise, followed by a fast-rise as they erupt.
• The slow rise for the May 4, 2013 filament starts at 01:53, and the fast rise starts at 02:15 UT.
• The slow rise for the January 26, 2016 filament starts at 16:00 UT, and the fast rise starts at 16:58 UT.
• Both of the two filaments exhibit a highly sheared core field in the shape of a sigmoid above the PIL, with reconnection occurring above the middle of the site of flux cancellation over the PIL.
• These observations show that these filament eruptions are in agreement with the standard model for a CME/flare filament eruption in that they erupt from a closed bipolar magnetic field.