CONVENIENT POTENTIAL FORECAST CHALLENGE: EVALUATION AT HAZARDOUS WEATHER TESTBED

- NWS forecasters at the Storm Prediction Center issue severe weather watches; they use a combination of models and observations to determine atmospheric temperature and moisture characteristics.
- Lapse rates and vertical distribution of moisture, which are observed by CrIS/ATMS are used to understand the instability of the lower atmosphere, which leads to convection and severe weather.
- NWS and broadcast forecasters participated in an evaluation of the Gridded NUCAPS product at the Hazardous Weather Testbed (HWT); forecasters found the plan view and cross section capabilities helpful in identifying frontal boundaries (Fig. 5) and mid-level moisture (Fig. 6) (see feedback in green below).

SUMMARY

A collaborative effort between SPoRT, CIMSS, CIRA, GINA, and NOAA has produced a unique gridded visualization of real-time CrIS/ATMS products. This product uses the NUCAPS retrieval algorithm and polar2grid software to generate a plan-view and cross-section visualization for forecast challenges associated with cold air aloft and convective potential. Forecasters at select partner offices have been able to view the Gridded NUCAPS products in AWIPS alongside other operational data products with generally favorable feedback.

FUTURE WORK

- Cold air aloft evaluation kicked off on December 6; have already received valuable feedback from forecasters which will be further investigated by the researcher collaborators on this project.
- Feedback from forecasters on the visualization will be used to update the methodology for how the data are displayed in AWIPS for follow-on assessment at 2017 HWT.
- Plan to work with AWIPS developers to baseline capability for gridding NUCAPS soundings that are already in the raw data sparse Alaska, forecasters traditionally rely on analysis/model fields, limited radiosonde observations, and pilot reports to nowcast the 3D extent of the CAA.
- Cold air aloft evaluation kicked off on December 6; have already received valuable feedback from forecasters which will be further investigated by the researcher collaborators on this project.
- Cold Air Aloft (CAA; -55°C and below) is potentially hazardous to aircraft due to the threat of fuel crystalizing.
- In data sparse Alaska, forecasters traditionally rely on analysis/model fields, limited radiosonde observations, and pilot reports to nowcast the 3D extent of the CAA.
- Gridded NUCAPS will allow forecasters to observe CAA in real-time where conventional observations are lacking in order to gain confidence in and analysis/model fields, limited radiosonde observations, and pilot reports to nowcast the 3D extent of the CAA.
- Figure 4 shows plan view (a) and cross section (b) capabilities in AWIPS along with color and brightness which highlights temperatures below -65°C, allowing forecasters to quickly identify the 3D extent of CAA.

ACKNOWLEDGMENTS

- This project is funded by Dr. Mitch Goldberg of the NOAA Joint Polar Satellite System Proving Ground/Risk Reduction Program. We would also like to thank the forecasters from the Alaska Center Weather Service Unit (CWSU), Alaska Aviation Weather Unit (AAWU), and participants of the 2016 HWT for their time and effort in providing feedback on the Gridded NUCAPS products.