Overview of NASA Glenn Research Center’s Communications and Intelligent Systems Division

Félix A. Miranda, Ph.D.
Acting Deputy Chief, Communications and Intelligent Systems Division
NASA Glenn Research Center, Cleveland OH 44135
Tel: 216-433-6589 E-mail: felix.a.miranda@nasa.gov

Presented to:

Professor Warwick Bowen
Program Manager, Centre for Engineered Quantum Systems
School of Mathematics and Physics, University of Queensland
Brisbane, Queensland, 4072, Australia
Abstract

The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.
Research and Engineering Directorate Leadership Team

Deputy Director of Research and Engineering (L)
Dr. Marla Pérez-Davis

Director of Research and Engineering (L)
Dr. Rickey J. Shyne

Associate Director of Research and Engineering (L)
Maria Babula

Chief Engineer Office (LA)
Richard T. Manella

Management Support and Integration Office (LB)
Kathy K. Needham

Communications and Intelligent Systems Division (LC)
Dawn C. Emerson

Power Division (LE)
Randall B. Furnas

Materials and Structures Division (LM)
Dr. Ajay K. Misra

Systems Engineering and Architecture Division (LS)
Derrick J. Cheston

Propulsion Division (LT)
Dr. George R. Schmidt
Provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

LC Competency Elements:

Space Communications (SpaceComm) & Aeronautical Communications (AeroComm)
Expertise:
- Networks & Architectures
- Information & Signal Processing
- Advanced High Frequency
- Optical Communications

Intelligent Systems – Cross-Cutting Competencies
Expertise:
- Optics and Photonics
- Smart Sensor Systems
- Instrumentation- Electronic
- Controls- Dynamic System Modeling and Controls
Communications and Intelligent Systems Division (LC)

Ms. Dawn C. Emerson
Deputy: TBD, Dr. Félix A. Miranda-Acting

Communications ST: Dr. Robert R. Romanofsky

123 FTE
58 WYE

Architectures, Networks and Systems Integration Branch
LCA/Dave Buchanan, Denise Ponchak
27 FTE (1 Ph.D, 22 MS, 4 BS), 20 WYE

Advanced High Frequency Branch
LCF/Dr. Felix Miranda
19 FTE (7 Ph.D, 9 MS, 3 BS), 4 WYE

Optics and Photonics Branch
LCP/Dr. George Baaklini
20 FTE (9 Ph.D, 10 MS, 1 BS), 6 WYE

Intelligent Control and Autonomy Branch
LCC/Dr. Sanjay Garg
20 FTE (5 Ph.D, 10 MS, 2 BS), 11 WYE

Information and Signal Processing Branch
LCI/Gene Fujikawa
18 FTE (4 Ph.D, 10 MS, 4 BS), 8 WYE

Smart Sensors and Electronics Systems Branch
LCS/Dr. Larry Matus
16 FTE (10 Ph.D, 4 MS, 2 BS), 8 WYE

Education

- PhD
- MS
- BS

123 FTE
58 WYE
Communications and Intelligent Systems Division (LC)

Optics and Photonics
- Optical Instrumentation
- Optical Communications
- Health Monitoring

Optical Instrumentation
- Optical Communications
- Health Monitoring

Architectures, Networks and Systems Integration
- Communications Architectures
- Modeling and Simulation/Tech Demos
- Spectrum and Link Analysis

Intelligent Control and Autonomy
- Intelligent Controls
- Dynamic Modeling
- Health Management

Advanced High Frequency
- Antennas/Propagation
- RF Systems and Components
- 3-D Electromagnetic Modeling

Smart Sensors and Electronics Systems
- Thin Film Physical Sensors
- High Temp/Harsh Environment Focus
- Wireless Technologies

Information and Signal Processing
- Radio Systems – SDRs, Cognitive
- Bandwidth and Power-Efficiency
- Waveform Development

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE
Additional Information
LC Branches
Architectures, Networks and Systems Integration Branch (LCA)

Communications Systems
- Requirements decomposition, systems definition, development, hardware and software build up, test and delivery of Space Network compatibility test unit including TDRS signal simulator.

Aeronautical Communications
- Includes air-to-air, air-to-ground, and ground-based mobile wireless communications, information networking, navigation and surveillance research, technology development, testing and demonstration, advanced concepts and architectures development, and national and international technology standards development.

Network Research
- Development of network components, design of network layers and networked systems architectures. Emphasis is on secure wireless mobility, protocol characterization and development, requirements definition, and flight software/hardware component assessment. Also includes "virtual" mission operations.
Information and Signal Processing Branch (LCI)

LCI Overview
Conducts research and technology development of information and signal processing methods and approaches of digital communications systems for aerospace applications. Emphasis on software-defined and cognitive radios; open SDR architectures and waveform development; position, navigation and timing methods; spectrum and power efficient techniques; reconfigurable microelectronic devices.

Facilities/Labs
- Software-Defined and Cognitive Radio Technology Development Laboratory
- Digital Systems and Signal Processing Lab
- EVA Radio and Integrated Audio Lab
- SCaN Testbed on ISS Available for Experimenters

Focus Areas
- **Software-Defined and Cognitive Radios**
 - Space Telecommunications Radio System (STRS)
 - STRS-compliant Hardware and Software
 - SDR Waveform Development
 - Digital Core for RF/Optical Terminal
- **High Speed Signal Processing**
 - Computer Modeling and Simulation Tools
 - Wireless and Microelectronic Devices for Communications
- **Advanced Exploration Systems**
 - Integrated Audio/Microphone Arraying
 - EVA Radio Development
 - Surface Navigation
- **SCaN Testbed Flight Radio Experiments and Demonstrations**
 - GPS Navigation and Timing
 - Ka-Band, Bandwidth-Efficient, High Rate Waveform
 - S- and Ka-Band IP Networking and Routing
 - Adaptive Modulation and Coding for Cognitive Radio

Images
- SCaN Testbed
- Software Defined Radios
- Extra-Vehicular Activity (EVA) Radio
- AES/EVA Integrated Audio
- iROC Flexible Digital Core
Advanced High Frequency Branch (LCF)

Branch Overview

- Conducts research and technology development, integration, validation, and verification at frequencies extending up to the terahertz region in the areas of semiconductor devices and integrated circuits, antennas, power combiners, frequency and phase agile devices for phased arrays, and radio wave propagation through Earth’s atmosphere, in support of NASA space missions and aeronautics applications.

- R&D is conducted in-house and also in collaboration with academia and industry to develop low mass, small size, high power and efficiency traveling-wave tube amplifiers, solid state power amplifiers; novel antenna technologies (e.g., wideband antennas, hybrid antennas (i.e., RF/Optical)), ground stations, among others.

- The Branch supports development of advanced technologies such as superconducting quantum interference filter (SQIF) for ultra-sensitive receivers and Ka-band multi-access arrays for NASA’s next generation space communications.

- Facilities include planar and cylindrical near-field, far-field and compact antenna ranges, cryogenic microwave and millimeter-wave device and circuit characterization laboratory, high power amplifier characterization laboratory, radio wave propagation laboratory, and clean room facilities.

- Semiconductor device modeling and high frequency circuit simulation, fabrication, and integration facilities are also available.

R&D 100 Award Winning Technologies

- Ka-Band TWTA
- Inflatable Antennas
- Phased Array Systems
- High Efficiency Power Combining TWTAs
- AlphaSat Propagation Terminal in Milan, Italy
- Hybrid RF/Optical Antenna
- NanoFETs
- SquIF Chip
- Semiconductor/Nanofabrication Clean Room Facility
Optics and Photonics Branch (LCP)

Optical Instrumentation

http://www.grc.nasa.gov/WWW/Optinstr/
- Our data and instrumentation help designers understand the fundamental physics of new systems, validate aerodynamics computational and life models, and improve space optical communications for human and robotic explorations.
- Our data leads to improved designs, validation and verification of systems performances, increased communications, safety and security and reduced design cycle times for many of the core technologies developed at Glenn and across NASA.

Flow/Noise Diagnostics
- Particle imaging Velocimetry (PIV)
- Background Oriented Schlieren
- Rayleigh Scattering
- PIV Tomography
- Combustion diagnostics
- Raman Diagnostics (Species, T)
- Plasma generation

Surface Diagnostics
- Temperature Sensitive Paint
- Pressure Sensitive Paint
- Stress Sensitive Film

Engine Icing
- Light Extinction Tomography
- Light Extinction Probes
- Raman Spectroscopy
- Impedance Sensor

Optical Communications

Free Space Communications
- Optical Teletennas
- Beaconless Pointing Systems
- High Data Rate for Deep Space & Near Earth

Secure Quantum Communications
- Quantum Entanglement
- Pulsed photon Pairs
- Quantum Illumination
- Quantum Key Distributions

Photonics and Health Monitoring

Mobile and Remote Sensing
- On-Orbit Solar Cell Characterization
 MISSE 5-8; TACSAT- 4;
- Hyperspectral Imaging
- Mobile Sensing Platforms

Communications
- Communications over power lines
- Communications Interface Boards
- High Data Rate

Health Monitoring
- Microwave Blade Tip Clearance
- Self diagnostic Accelerometer
- Fiber optics sensors
- Morphology dependent resonance
- Phosphor Thermography
- Capacitance & piezo patches sensors
- Wireless and wired techniques
Smart Sensors and Electronics Systems Branch (LCS)

Description
Conducts research and development of adaptable instrumentation to enable intelligent measurement systems for ongoing and future aerospace propulsion and space exploration programs. Emphasis is on smart sensors and electronics systems for diagnostic engine health monitoring, controls, safety, security, surveillance, and biomedical applications; often for high temperature/harsh environments.

Focus Areas
• Silicon Carbide (SiC) - based electronic devices
 - Sensors and electronics for high temp (600°C) use
 - Wireless sensor technologies, integrated circuits, and packaging
• Micro-Electro-Mechanical Systems (MEMS)
 - Pressure, acceleration, fuel actuation, and deep etching
• Chemical gas species sensors
 - Leak detection, emission, fire and environmental, and human health monitoring
• Microfabricated thin-film physical sensors
 - Temperature, strain, heat flux, flow, and radiation measurements
• Harsh environment nanotechnology
 - Nano-based processing using microfabrication techniques
 - Smart memory alloys and ultra low power devices

Facilities/Labs
• Microsystems Fabrication Facilities
 - Class 100 Clean Room
 - Class 1000 Clean Room
• Chemical vapor deposition laboratories
• Chemical sensor testing laboratories
• Harsh environment laboratories
 - Nanostructure fabrication and analysis
 - Sensor and electronic device test and evaluation

Microsystems Fabrication Facility
SiC Signal Processing
Chemical Gas Sensors
MEMS Fuel Actuation
Thin Film Physical Sensors
Intelligent Control and Autonomy Branch (LCC)

Propulsion Controls
- **Active Combustion Control**
 - Control of Thermo-acoustic Instability
 - High Bandwidth Fuel Actuation
- **Advanced Control Architecture**
 - Distributed Engine Control
 - Hardware-in-the-loop Test-bed
- **Intelligent Engine Control**
 - Enhanced Engine Response for Emergency Operations
 - Robust Engine Control
 - Model-Based Engine Control
 - V&V of Advanced Controls
- **High Speed Propulsion**
 - Aero-Propulso-Servo Elasticity for Supersonic Propulsion System
 - Mode Transition Management for Air-Breathing Hypersonic Propulsion

Health Management
- **Propulsion & Power Systems**
 - Gas Path Health Management
 - Sensor Selection
 - Sensor Data Qualification
 - Fault Modeling and Diagnostics
 - Model-Based Engine Simulation for Engine Test, Calibration and Performance Analyses

Advanced Propulsion Concepts
- **Unsteady Propulsion**
 - Pulse Detonation Engine
 - Pressure Gain Combustion

Communications
- **Integrated Radio and Optical Comm**
 - Spacecraft Attitude Estimation
 - Spacecraft Structural Dynamics

Software Tools
- **Engine Modeling & Control**
 - C-MAPSS (Commercial Modula Aero Propulsion System Simulation)
 - C-MAPSS40k (40,000 lb Thrust Engine)
 - T-MATS (Tool for Modeling and Analysis of Thermodynamic Systems)

Current NASA Programs
- **Aeronautics Research Mission**
 - Advanced Air Vehicle
 - Airspace Operations and Safety
 - Transformative Aeronautics Concepts

- **Human Exploration and Operations Mission**
 - Space Launch System
 - SCAN
 - Orion
Specific Technology Areas of Interest
Advanced RF Antenna and Optical Technologies

Antennas/Propagation

AlphaSat Propagation Terminal in Milan, Italy

Inflatable Antennas

Phased Array Systems

Mesh Antennas

Shape Memory Polymers Antennas

Teletenna Concept

Uplink Arraying

3-D Printed Antennas for Cubesats

SCaN Testbed

Ground Station

Hybrid RF/Optical Antenna
Areas of Interest

- Flight and ground antennas providing larger effective apertures than those currently in operation, with high efficiency but lower mass per unit area and accurate pointing.

- Novel materials, design, and manufacturing methods that enable lower mass, greater efficiency, and greater control of fields across the antenna aperture.

- Game-changing advances in component technologies that could enable significant advances in antenna array performance and enable alternate, higher-performance architectures.

- Ka-band multiple-access phased arrays for NASA’s Next Generation Communication and Navigation Architecture Systems (i.e., TDRSS follow-on relay and user terminals).

- High-performance electronically-steered antennas required for a dedicated communications relay spacecraft with multiple simultaneous connections, advanced multifunction antennas to support science missions that utilize a multifunction antenna to both communicate and conduct science.

- Antennas that are reconfigurable in frequency, polarization, and radiation pattern that reduce the number of antennas needed to meet the communication requirements.

- Arrays of optical telescopes as an option to building large monolithic telescopes.

- Light weight precision mirror technologies for space applications.

- Novel high efficiency single photon counting detector systems.
Example of Optical Technology Need: Novel Optical Communications Architectures

Goal: Develop futuristic deep-space optical communications terminals for space and ground systems

Objective: Investigate hybrid microwave and optical teletenna systems for deep space communications and explore alternative to single monolithic earth-based terminals.

Challenge: Minimizing hybrid system mass; implementing precision beaconless pointing; realizing vibration isolation to support micro-radian beam pointing; minimizing ground array cost relative to single monolithic telescope.

Benefit: Enhancing data rate from Mars to Earth from the current 6 Mbps to over 250 Mbps and minimizing the capital investment needed to support the ground infrastructure to enable that link.

State of Art Technology Readiness Level (TRL): 3
Technology Performance Goal TRL: 6
Cognitive Radio and Signal Processing Technologies

SCaN Testbed
Software Defined/Cognitive Radios

AES/EVA Radio/Integrated Audio

Combined Communications/Imaging

iROC Flexible Digital Core

Space Telecommunication Radio System (STRS) Architecture

Cognitive Engine Algorithms
Cognitive Radio and Signal Processing Technologies

Goal

To improve the state of the user platform (spacecraft/aircraft) to maximize data return, enable substantial efficiencies, or adapt to unplanned scenarios through the use of cognitive systems. Cognitive systems and autonomy have the potential to improve system performance, increase data volume return, improve data transmission efficiency, and reduce user burden to improve science return from NASA missions. Cognitive systems will sense, detect, adapt, and learn from its environment to improve the communications/navigation capabilities of the user platforms.

Areas of Interest

- Cognitive engine (algorithm) and component development to demonstrate new capability in sensing and adapting to the radio/mission environment
- Introduce changes in physical layer (PHY) data rate, modulation, and coding, media access control layer (MAC) for new protocols and cognitive engines to negotiate changes between nodes and throughout the network, learning opportunities and techniques, and networking and application layers (and across layers) to adjust to signal conditions, efficiently using links for telemetry, video, adaptive and intelligent routing, etc.
Areas of Interest

- System wide distributed intelligence of cognitive and intelligent applications - system wide effects on decisions made by one or more communication/navigation elements, how to handle unexpected or undesired decisions.
- Flexible data rate, modulation, or frequencies between nodes of satellites, utilizing space and ground network stations and multiple access techniques that optimize connectivity and throughput while minimizing onboard data storage and interference.
- Signal processing platforms, adaptive front ends for RF or optical communications with cognitive or intelligent applications to provide needed capability while minimizing on-board resources and cost.
- Precise autonomous navigation and pointing techniques to minimize pointing loss and to coordinate multiple autonomous activities with cognitive radio systems that can continuously maximize data return via both multiple beam GEO relays and direct to ground links.
Example of Cognitive Technology Needs: Adaptive Coding and Modulation DVB-S2

Previous approaches for Space Applications
• NASA networks are fixed coding & modulation
• Worst case link margin used to guarantee nominal operations, leading to overdesigned systems, and non-optimal utilization
• Increasing capability requires proportionally larger systems

New Method:
• Coding and modulation (data rate) can be varied based on link conditions, applicable to all space networks (SN, DSN, NEN)
• Leverage existing standards (e.g. DVB-S2, CCSDS AOS OCF)
• Apply cognitive systems to sense, detect, classify, learn, and adapt to time-varying communication environment.

Benefits:
• Increased data volume return and efficient use of communication link and spectrum
• Communications more robust and resilient to unpredicted conditions (e.g. interference)
• Enables increased autonomy

Return on Investment
• 3X data throughput increase
• Access time per user services/infrastructure
• Reduced SWaP, operations complexity, and cost
• Increased system contingency management capability

Technology Infusion Plan
• Collaboration with SN on DVB-S2 for operations
• Applications will go into STRS repository for mission reuse
• Foundation for cognitive/intelligent systems
Control, Simulation, & Embedded HW Technologies

Engine Design – Steady State Model

Iterative Process

T-MATS

Control Design – Dynamic Model

Model Based Engine Control

Hardware Infrastructure

Distributed Engine Control

NASA High Temperature Silicon Carbide Electronics

10-Transistor Ring Oscillator IC Chip

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE
Areas of Interest

- Improved understanding of the information contained in the engine gas path related to system performance and safety.
- Improved sensing of spatial and temporal information in the engine gas path to extract information.
- Improved high temperature electronics to enable close coupling of the transducer to signal processing and digital data reduction functions.
- High speed, secure, reliable, local area networks in a high temperature environment to ensure deterministic distributed data flow and stable system control.
- Access to sufficient on-board computational resources to collect and process wide bandwidth system sensory data, process multivariable control algorithms, and evaluate control output relative to real-time model-based dynamic system simulation.
- Improved computational efficiency of complex multivariable control algorithms.
- Improved convergence and accuracy of real-time, on-board, dynamic engine system simulation.
- Improved modeling of engine system deterioration.
- Improved responsiveness and accuracy of engine system actuators.
- Improved fidelity of engine system simulation tools to enable quantitative evaluation of engine control architecture and engine system relative to constraints, performance and safety impact.
- More rapid control design process to enable timely input that impacts engine design process.
Goal: Demonstrate the capability of the control system to trade mechanical engine design margin for safe engine system performance improvement.

Objective: Investigate model-based control algorithms to precisely estimate system stability margin and performance characteristics in order to safely take advantage of unused engine capability.

Challenge: Coordinate a multidisciplinary investigation that couples steady-state engine design with dynamic control modeling and evaluates the outcome in terms of control hardware capabilities and architecture.

Benefit: Safely improve engine responsiveness and reduce fuel burn while developing design tools that have the capability to evaluate and integrate design into an end-to-end system.

State of Art Technology Readiness Level (TRL): 2
Technology Performance Goal TRL: 5