UAS Pilot Evaluations of Suggestive Guidance on Detect-and-Avoid Displays

Presenter:
Kevin J. Monk, M.S.
NASA Ames Research Center

Co-Authors:
Zachary Roberts
San Jose State University Research Foundation

HFES
22 SEP 2016
Introduction

• UAS in the NAS Project Objectives
 – Address technical and safety barriers to the expansion and integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS)
 • Currently limited to public purposes (e.g., military training) in restricted airspace
 – Produce research findings that guide the development of RTCA Special Committee 228’s Minimum Operational Performance Standards (MOPS) for UAS
 • Identify minimum DAA display, alerting, & maneuver guidance that result in acceptable pilot performance and response times

• Detect and Avoid (DAA)
 – Existing regulations for manned flight operations require onboard pilots to “see and avoid” other aircraft in order to remain well clear (14CFR, Sec 91.113)
 – Unmanned operations will require a traffic display equipped with a “detect and avoid” system that provides the information necessary for self-separation
 • Effectively substituting for a manned pilots’ ability to see outside of their aircraft under normal operating conditions
Background

- Past studies have explored the minimum visual information requirements necessary to perform UAS pilot-in-the-loop DAA tasks
 - Predictive displays with integrated maneuver guidance tools for conflict avoidance have improved pilot performance compared to displays with less information
 - Less near midair collisions (NMACs) (Friedman-Berg et al., 2014)
 - Reduced severity of well clear violations (Bell et al., 2012; Santiago & Mueller, 2015)
 - Quicker response times (Rorie & Fern, 2015; Rorie et al., 2016)
 - Higher pilot preference ratings (Monk et al., 2015)
 - Advanced guidance tools were tightly coupled to the vehicle control interface
 - Auto-populated maneuver resolution directly into steering window
Purpose

• Examine pilot evaluations of four DAA displays with varied levels of suggestive guidance to further determine minimum information requirements for UAS ground control stations
 • Suggestive guidance tools decoupled from command-and-control interface
 – Presented range of solutions as opposed to a directive command

• *Are the pilots’ perceptions of the DAA system consistent with their objective performance?* (Rorie et al., 2016)
Method

• Participants
 – 16 active duty UAS pilots
 • $\mu_{age} = 37$ years old
 • Unmanned flight experience
 – Civil: 30 hours avg.
 – Military: 1100 hours avg.
 • Manned flight experience
 – Civil: 575 hours avg.
 – Military: 1760 hours avg.

• Simulation Environment
 – Vigilant Spirit Control Station (VSCS)
 • Developed by Air Force Research Laboratory (Feitshans et al., 2008)
 • Primary field of view was Tactical Situation Display (TSD):
 – Command-and-control interface
 – DAA guidance & traffic
 – Mission route
Experimental Design

- **DAA Display Configuration**
 - Minimum Information Only (Info Only)
 - No-Fly Bands
 - Omni Bands
 - Vector Planner

- **Minimum set of traffic information was constant across all displays**
 - Intruder Location & Direction
 - Relative Altitude
 - Vertical Trend Arrow
 - Call Sign (within data tag)
 - Ground Speed (within data tag)
 - Multi-Level Conflict Alerting Structure
DAA System: Multi-Level Alerting Structure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Time to Loss of Well Clear</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| ![DAA Warning Alert] | **DAA Warning Alert** | • **Immediate action required**
• Notify ATC as soon as practicable after taking action | 25 sec
(TCPA approximate: 60 sec) | “Traffic, Maneuver Now” |
| ![Corrective DAA Alert] | **Corrective DAA Alert** | • On current course, **corrective action required**
• Coordinate with ATC to determine an appropriate maneuver | 75 sec
(TCPA approximate: 110 sec) | “Traffic, Separate” |
| ![Preventive DAA Alert] | **Preventive DAA Alert** | • On current course, corrective action **should not be required**
• Monitor for intruder course changes
• Talk with ATC if desired | N/A | “Traffic, Monitor” |
| ![DAA Proximate Alert] | **DAA Proximate Alert** | • Monitor target for potential increase in threat level | N/A | N/A |
| ![None (Target)] | **None (Target)** | • No action expected | X | N/A |
Display Configurations

1. **Info Only**
 - Standard intruder information and multi-level alerting presented (no guidance)
 - Intruder Location & Direction
 - Relative Altitude
 - Vertical Trend Arrow
 - Call Sign (within data tag)
 - Ground Speed (within data tag)
 - Threat Level

![Display Configuration](image)
Display Configurations

2. No-Fly Bands
 - Indicated headings/vertical speeds that would lead to an eventual loss of well clear
 • Maneuver outside of banding to maintain well clear

[Images of Heading Bands and Vertical Speed Band]
3. Omni Bands
 - Constantly displayed predicted threat level at nearby headings/altitudes
 • Green = regions that would maintain well clear
 • Yellow = regions that would trigger at least one Corrective alert
 • Red = regions that would trigger at least one Warning alert
4. Vector Planner

– Allowed pilots to test a single heading/altitude option for predicted threat level
 • Green = option would maintain well clear
 • Solid Yellow = option would trigger at least one Corrective alert
 • Solid Red = option would trigger at least one DAA Warning

– Tool was off by default
 • Engaged by dragging vector arrow or clicking option on altitude tape
 • 5 second time-out
Method: Procedure

- DAA Pilot Task
 - Operate simulated MQ-9 through Class E airspace under Instrument Flight Rules
 - Maintain well clear with other aircraft
 - Four 37-minute scenarios
 - Two pre-filed flight plans
 - 9 scripted encounters with ownship
 » 6 encounters would lead to loss of well clear without pilot action
 - Background traffic emulated busy day at Oakland Center (DOA 40/41)
 - Controlled by ‘pseudopilots’ via Multi-Aircraft Control Station (MACS; Prevot, 2002)
 - Sector managed by confederate ATC
 - Attend to secondary tasks
 - Chat messages requesting health/status information (e.g. fuel remaining)
 - Electronic checklists for system failure events
Measures

• Pilots completed post-trial and post-simulation questionnaires with subjective ratings pertaining to the preceding display configuration
 – Responses were analyzed using a one-way repeated measures Analysis of Variance (ANOVA)

• Post Trial Questionnaire
 – Workload (NASA TLX)
 – Conflict Assessment and Avoidance
 – Ease of Use

• Post-Simulation Questionnaire
 – Information Sufficiency
 – Display Preference

\(\alpha = 0.05 \)
Results: Post-Trial

- **Conflict Assessment**
 - ‘This display provided the information necessary to predict a potential loss of well clear’
 - Omni Bands received higher assessment ratings compared to the Info Only and Vector Planner displays, $p < .001$
 - No-Fly Bands received higher assessment ratings compared to the Info Only display, $p < .05$
Results: Post-Trial

- Conflict Avoidance
 - ‘This display provided the information necessary to perform avoidance maneuvers for well clear maintenance’
 - Conflict avoidance ratings were greater for the No-Fly and Omni Bands displays compared to the Info Only and Vector Planner displays, $p < .001$
Results: Post-Trial

• Ease of Use
 – ‘This display was easy to use’
 • Pilots rated the Omni Bands display as easier to use than the Info Only, No-Fly Bands, and Vector Planner displays, $p = .001$
 – Info Only display was rated easier to use than Vector Planner, $p < .05$
• Omni Bands resulted in significantly lower workload ratings than the Vector Planner for 5 of the 6 scales:
 – Mental, Temporal, Effort, Frustration, & Performance Degradation
 • Only Physical Demands failed to result in a significant difference
Results: Post-Sim

• Display Preference
 – ‘Rank the displays in order of their effects on your ability to maintain well clear’
 • Banding displays were most favored overall
 – 88% of pilots voted **Omni Bands** as the most beneficial
 – No-Fly Bands ranked second by 63% of pilots
 • Vector Planner received the lowest average ranking (ranked last by 50% of pilots)
 • Only one pilot rated Info Only display as top-2 preferred

 – ‘How did the three suggestive guidance displays affect your ability to maintain well clear compared to Info Only?’

![Bar chart showing the impact of different display configurations. No-Fly Bands have the highest average rating at 3.81, followed by Omni Bands at 4.81, and Vector Planner at 2.56.]

<table>
<thead>
<tr>
<th>Display Configuration</th>
<th>Significantly Better</th>
<th>About the Same</th>
<th>Significantly Worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Fly Bands</td>
<td>3.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omni Bands</td>
<td>4.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector Planner</td>
<td>2.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

- Subjective ratings revealed that suggestive maneuver guidance in the form of banding is highly favored by UAS pilots
 - Information on all displays were rated as sufficient to DAA task performance overall
 - Banding displays rated most conducive to conflict detection and resolution
 - Provided guidance that was constantly visible to pilots
 - Omni Bands ranked most preferred and easiest to use
 - Indicated severity of potential threat(s)
 - Provided specific altitude values to achieve
 - Reduced cognitive workload compared to Vector Planner and Info Only
 - Vector Planner required manual activation that lasted just five seconds
 » “Added an undesirable lag in decision-making”
 » Only display rated difficult to use
 - Consistent with objective performance (Rorie et al., 2016)
 - Quicker response times and less well clear violations with the banding displays
Conclusion

- Suggestive maneuver guidance in the form of banding is advantageous to pilot acceptability, response time, and performance

- DAA display considerations
 - Suggestive guidance that is not readily available may fare worse for task performance compared to no guidance at all if not implemented well
 - Trial planning tools previously rated more favorably when coupled with navigation interface in past research (Monk et al., 2015)
 - Further research needed to determine minimum information requirements
 - All displays rated as sufficient despite differences in subjective/objective performance
 - Interoperability with existing collision avoidance systems
 - Variations in aircraft performance, airspace environment, navigation interface, etc.
The End

Questions?
Display Conditions (VIDEO BACKUP)
Results: Post-Trial (Backup?)

- **Task Performance**
 - ‘*Rate your ability to handle all pilot responsibilities*’
 - Pilots indicated greater ability to handle DAA tasks in the No-Fly and Omni Bands displays compared to Info Only and Vector Planner, \(p = .001 \)