WetLab-2: Providing Quantitative PCR Capabilities on ISS

Macarena Parra
Ames Research Center
July 9, 2015
WetLab-2 Objectives

• To place on the ISS a research platform to facilitate space biology gene expression research.

 – Capability to process samples and perform qRT-PCR

• Facility will support multiple sample types (bacteria, cells, tissue)

• The analyzer will remain on ISS, while the experiment-specific disposable hardware will launch with the experiments.

• Also capable of supporting analysis of air, surface, water, and crew health.

• Validation Flight: SpaceX-7
WetLab-2 Operations Overview
Sample Transfer Tool

• WL2 uses a Luer-lok connection to accept samples
• Techshot Analytical Containment Transfer Tool (ACT2)
 – Uses luer-lok
 – Provides two levels of containment
 – Maintained throughout sample transfer process
• Standard syringe can be used if two containment levels are not needed

For Validation Flight:
• Will use the 5ml configuration of the ACT2
• Sample (E. coli) will be frozen at -80C after loading in unit
• Crew will thaw the sample then use it as input to the SPM
• Will use a standard luer-lok syringe to introduce the tissue
Sample Preparation Module (SPM)

- Function of SPM
 - Breaks open cells and binds RNA to column
 - Washes RNA
 - Elutes RNA into removable RNA syringe

- Two versions: mammalian, bacterial
- Closed system
- Fluids are pre-loaded in syringes
- No alcohols or organic solvents
- Disposable one time use
- Designed to be run in Disposable Glove Bag (DGB)
- Crew manipulations consist of:
 - Attaching and removing syringes
 - Turning OmniLyser on and off
 - Pushing syringe plungers
 - Switching valves

System has been successfully tested on the ground with bacterial and mammalian cells
SPM runs give comparable results to those from the already proven ClaremontBio bench procedure.

E. coli

<table>
<thead>
<tr>
<th>Ladder</th>
<th>SPM</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIN Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>~8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Mouse liver

<table>
<thead>
<tr>
<th>Ladder</th>
<th>SPM</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIN Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>~9</td>
</tr>
<tr>
<td>8.3</td>
</tr>
</tbody>
</table>
Pipette Loader

• Function of RAM (Pipette Loader)
 – Removes air bubbles from the RNA sample
 – Loads pipette tip

• Closed system
• Designed to be run in the Disposable Glove Bag (DGB)
• No fluids pre-loaded (long shelf life)
• Sample must be driven slowly through the bubble trap to be effective
• Loads the sample into the Repeater Pipette Tip for downstream tube loading
Reaction Tube Loading and Rotor

• Reaction Tube Loading
 – Pipette is used to load 25ul into each Reaction Tube
 – Loading occurs through septum of modified cap
 – Prototypes tested on Parabolic Flight

• Reaction Tube Rotor
 – Holds 8 Reaction Tubes
 – Rotor is attached to drill on ISS
 – Spin to get RNA into the sample window
 – Prototypes used on Parabolic Flight – design changes made based on experience
Pre-filled Reaction Tubes

- These are COTS SmartTube with a custom septa cap for loading in microgravity.
- They contain lyophilized primers, probes, enzymes and Master Mix.
- They will be foil packed to protect from moisture and light.
- Lyophilized Reagents give comparable data to commercial wet chemistry reagents.
• SmartCycler
 – qRT-PCR system
 – Instrument is designed for field work
 – Will fly as a COTS item
 – Will be used in the aisle
 – Mounted on a Bogun Arm on the rack
 – Provides 16 wells and multiplexing capability
 – Thermal programs can be uploaded from the ground
 – Data can be downlinked to ground after run
On-Orbit Configuration

OCAMS Used for Uplink/Downlink Data

Pantry Laptop

Disposable Glove Bag

SmartCycler (15A Fuse)

ISS Inverter (12A Fuse)

To Rack 120 VDC
Goal of Validation Flight: On-orbit test and check-out of the WetLab-2 system in a systematic way to ensure it will return valid data to future researchers

Objectives of Validation Flight:

• Install software and set-up hardware (Session 1)
• Does real-time PCR data generated on-orbit match data on earth? (Session 2)
 – No convection or other microgravity related issues
 – Validate SmartCycler, RAM, tube loading and rotor functions
• Does the Sample Processing Module function correctly on-orbit? (Session 3)
 – All fluidic manipulations function properly
 – Prove out system with first sample type (*E. coli*)
 – Test system using on-orbit isolated RNA as input to SmartCycler
• Does system function correctly on-orbit with tissues? (Session 4)
 – All fluidic manipulations function properly
 – Prove out system with second sample type: mouse tissue

Flight results from each session will be compared to results from ground controls

Ground controls will be run with a 2-24 hour delay from the flight samples
Session 3: *E. coli* qRT-PCR

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Protocol</th>
<th>Sample ID</th>
<th>Sample Type</th>
<th>FAM Ct</th>
<th>Cy3 Ct</th>
<th>Cy5 Ct</th>
<th>Ave A</th>
<th>SD</th>
<th>Ave B</th>
<th>SD</th>
<th>Ave C</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Session 3</td>
<td>Gene A</td>
<td>E. coli RNA</td>
<td>19.87</td>
<td>0</td>
<td>0</td>
<td>20.08</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Session 3</td>
<td>Gene A</td>
<td>E. coli RNA</td>
<td>20.06</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Session 3</td>
<td>Gene A</td>
<td>E. coli RNA</td>
<td>20.44</td>
<td>44.44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Session 3</td>
<td>Gene A</td>
<td>E. coli RNA</td>
<td>19.94</td>
<td>35.29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Session 3</td>
<td>Gene B</td>
<td>E. coli RNA</td>
<td>0</td>
<td>20.44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Session 3</td>
<td>Gene B</td>
<td>E. coli RNA</td>
<td>0</td>
<td>20.13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Session 3</td>
<td>Gene B</td>
<td>E. coli RNA</td>
<td>0</td>
<td>20.78</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>Session 3</td>
<td>Gene B</td>
<td>E. coli RNA</td>
<td>0</td>
<td>19.82</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Session 3</td>
<td>Genes A&B</td>
<td>E. coli RNA</td>
<td>20.03</td>
<td>20.35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>Session 3</td>
<td>Genes A&B</td>
<td>E. coli RNA</td>
<td>19.32</td>
<td>20.58</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Session 3</td>
<td>Genes A&B</td>
<td>E. coli RNA</td>
<td>19.47</td>
<td>20.22</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Session 3</td>
<td>Genes A&B</td>
<td>E. coli RNA</td>
<td>20.19</td>
<td>20.43</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>Session 3</td>
<td>Genes A, B, & C</td>
<td>E. coli RNA</td>
<td>20.24</td>
<td>20.75</td>
<td>22.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>Session 3</td>
<td>Genes A, B, & C</td>
<td>E. coli RNA</td>
<td>20.09</td>
<td>21.71</td>
<td>23.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>Session 3</td>
<td>Genes A, B, & C</td>
<td>E. coli RNA</td>
<td>20.81</td>
<td>21.3</td>
<td>24.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>Session 3</td>
<td>Genes A, B, & C</td>
<td>E. coli RNA</td>
<td>18.71</td>
<td>20.12</td>
<td>21.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successful singleplex, duplex and triplex results

This data is typical for post-optimization runs
Session 4: mouse liver qRT-PCR

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Protocol</th>
<th>Sample ID</th>
<th>Sample Type</th>
<th>FAM Ct</th>
<th>Cy3 Ct</th>
<th>Cy5 Ct</th>
<th>Avg A</th>
<th>SD</th>
<th>Avg B</th>
<th>SD</th>
<th>Avg C</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Session 4</td>
<td>Gene A</td>
<td>mouse liver RNA</td>
<td>22.68</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Session 4</td>
<td>Gene A</td>
<td>mouse liver RNA</td>
<td>21.83</td>
<td>0</td>
<td>0</td>
<td>22.29</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Session 4</td>
<td>Gene A</td>
<td>mouse liver RNA</td>
<td>22.3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Session 4</td>
<td>Gene A</td>
<td>mouse liver RNA</td>
<td>22.36</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Session 4</td>
<td>Gene B</td>
<td>mouse liver RNA</td>
<td>0</td>
<td>22.15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Session 4</td>
<td>Gene B</td>
<td>mouse liver RNA</td>
<td>0</td>
<td>21.07</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Session 4</td>
<td>Gene B</td>
<td>mouse liver RNA</td>
<td>0</td>
<td>21.66</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>Session 4</td>
<td>Gene B</td>
<td>mouse liver RNA</td>
<td>0</td>
<td>21.61</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Session 4</td>
<td>Genes A&B</td>
<td>mouse liver RNA</td>
<td>23.47</td>
<td>21.61</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>Session 4</td>
<td>Genes A&B</td>
<td>mouse liver RNA</td>
<td>23.79</td>
<td>21.48</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Session 4</td>
<td>Genes A&B</td>
<td>mouse liver RNA</td>
<td>24.89</td>
<td>21.72</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Session 4</td>
<td>Genes A&B</td>
<td>mouse liver RNA</td>
<td>23.27</td>
<td>21.37</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>Session 4</td>
<td>Genes A, B, & C</td>
<td>mouse liver RNA</td>
<td>26.51</td>
<td>23.32</td>
<td>25.83</td>
<td>26.58</td>
<td>0.85</td>
<td>23.38</td>
<td>0.38</td>
<td>26.41</td>
<td>1.23</td>
</tr>
<tr>
<td>A14</td>
<td>Session 4</td>
<td>Genes A, B, & C</td>
<td>mouse liver RNA</td>
<td>25.64</td>
<td>23.2</td>
<td>25.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>Session 4</td>
<td>Genes A, B, & C</td>
<td>mouse liver RNA</td>
<td>27.7</td>
<td>23.06</td>
<td>25.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>Session 4</td>
<td>Genes A, B, & C</td>
<td>mouse liver RNA</td>
<td>26.48</td>
<td>23.93</td>
<td>28.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successful singleplex, duplex and triplex results

This data is typical for post-optimization runs
Conclusion

- WetLab-2 will facilitate space biology gene expression research
 - Establishes a qRT-PCR analytical instrument on the ISS.
 - Provides a Standard Transfer System for sampling among Wetlab-2 and other bioprocessing & analytical systems (Techshot ACT2)
 - Sample preparation of minimal complexity, can be completed by crew in <2 hours
- Reduce need for downmass of samples due to on-orbit analysis
- Allow researchers to begin to utilize the ISS as a fully working laboratory
 - Results will be available to researchers within hours of run completion allowing for the potential for interactivity with experiments driven by the analysis of results
- Provide on-orbit analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health.
 - Results would be available in as little as 90 min compared to current testing that takes 3-6 months due to the need for sample return
- Looking for users of the system after completion of validation flight
WetLab-2 Team

Management and Systems Engineering
- Julie Schonfeld
- Mark Mallinson
- Eddie Uribe
- Gary Hiatt

Science Team
- Eduardo Almeida
- Macarena Parra
- Jimmy Jung
- Luan Tran

S&MA
- Leonard Hee
- Dean Chacon

Configuration Management
- Mike Henschke

Engineering
- Peter Tong
- Youssef Mohamedaly
- Tori Chinn
- Liz Hyde
- Tony Chen
- Sean Sharif

Fluidics
- Travis Boone

Software
- Matt Chin
- Matt Everingham

Test Leads
- Dzung Hoang
- Jennifer Murphy

Operations
- Jessica Hauss
- Cindy Harris

Finance
- Veny Jubilo

Manufacturing
- Emmett Quigley
- Ron Strong

PIM: Laura Holcomb
Ops POC: Lisa Prendergast
RIM: Melissa Wallace (Brienne Shkeddi)
RPM: Jessica Curry

Note: Wetlab-2 = Wet Lab RNA SmartCycler
Backup Slides
Session 2: q-PCR using QC DNA

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Protocol</th>
<th>Sample ID</th>
<th>Sample Type</th>
<th>FAM Ct</th>
<th>Avg</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Session 2</td>
<td>Low Template</td>
<td>E.coli DNA</td>
<td>30.25</td>
<td>29.72</td>
<td>0.38</td>
</tr>
<tr>
<td>A2</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>29.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>29.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>29.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Session 2</td>
<td>Mid Template</td>
<td>E.coli DNA</td>
<td>22.6</td>
<td>22.55</td>
<td>0.15</td>
</tr>
<tr>
<td>A6</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>22.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>22.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>22.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Session 2</td>
<td>High Template</td>
<td>E.coli DNA</td>
<td>16.04</td>
<td>16.30</td>
<td>0.45</td>
</tr>
<tr>
<td>A10</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>16.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>16.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>15.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>Session 2</td>
<td>No Template</td>
<td>E.coli DNA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A14</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A15</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A16</td>
<td>Session 2</td>
<td></td>
<td>E.coli DNA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No carryover from tube to tube

This data is typical
Post-Validation/Post-Flight

- Fluidics components are disposable
- SmartCycler to remain on board ISS
- SLPS Principle Investigators who propose to use the SmartCycler with launch fluidics components with science hardware
 - Current estimates indicate SmartCycler use 2-4 investigations per year
 - Reagents loaded in SPM and SmartTubes to be experiment-specific