
Aloysius F. Hepp, Michael J. Kulis, and Jeremiah S. McNatt
Glenn Research Center, Cleveland, Ohio

Norman V. Duffy and Michael D. Hoops
Wheeling Jesuit University, Wheeling, West Virginia

Elizabeth Gorse
University of Maine, Orono, Maine

Philip E. Fanwick
Purdue University, West Lafayette, Indiana

John Masnovi
Cleveland State University, Cleveland, Ohio

Jonathan E. Cowen
Case Western Reserve University, Cleveland, Ohio

Raymond N. Dominey
University of Richmond, Richmond, Virginia

December 2016
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server—Registered (NTRS Reg) and NASA Technical Report Server—Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., “quick-release” reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Fax your question to the NASA STI Information Desk at 757-864-6500

- Telephone the NASA STI Information Desk at 757-864-9658

- Write to: NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

Aloysius F. Hepp, Michael J. Kulis, and Jeremiah S. McNatt
Glenn Research Center, Cleveland, Ohio

Norman V. Duffy and Michael D. Hoops
Wheeling Jesuit University, Wheeling, West Virginia

Elizabeth Gorse
University of Maine, Orono, Maine

Philip E. Fanwick
Purdue University, West Lafayette, Indiana

John Masnovi
Cleveland State University, Cleveland, Ohio

Jonathan E. Cowen
Case Western Reserve University, Cleveland, Ohio

Raymond N. Dominey
University of Richmond, Richmond, Virginia

National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

December 2016
Acknowledgments

We thank the following students and collaborators for their contributions to this work: Mark Cundick (Kent State University) for synthesis of nickel dithiocarbamate complexes, Dr. Douglas Ogrin (OAI Postdoctoral Associate at NASA Glenn Research Center (GRC)) for crystal growth, Dana Anderson (NASA summer intern from University of Michigan) for assistance with pyrolysis experiments and microscopy, and Lyndsey McMillon-Brown (NASA Pathways Intern from Yale University) for assistance with X-ray powder diffraction. We are grateful to Prof. M.V.S. Chandrashekhar and colleagues from the Department of Electrical Engineering at the University of South Carolina for TEM data and analysis. Dr. James Gaier and Daniel Scheiman (NASA GRC) are acknowledged for technical discussions. Profs. Norman Duffy and Michael Hoops thank the NASA West Virginia EPSCoR program for financial support. Work at NASA Glenn Research Center was supported in part by the following programs: Internal Research and Development, Aeronautics Research Alternative Fuels, Exploration Systems Dust Mitigation, and Advanced Exploration Systems Logistics Reduction and Repurposing. Profs. Michael Hoops and John Masnovi are grateful for support through the NASA GRC Summer Faculty Fellowship Program.

Supplementary Information

The Cambridge Crystallographic Data Centre contains the full set of supplementary crystallographic data (CIFs) for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (see Experimental and/or Table 1 for specific deposition numbers). More complete tables of bond lengths and angles (Tables XII to XV) are included in the Appendix.

Aloysius F. Hepp, Michael J. Kulis, and Jeremiah S. McNatt
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Norman V. Duffy and Michael D. Hoops1
Wheeling Jesuit University
Wheeling, West Virginia 26003

Elizabeth Gorse2
University of Maine
Orono, Maine 04469

Philip E. Fanwick
Purdue University
West Lafayette, Indiana 47907

John Masnovi1
Cleveland State University
Cleveland, Ohio 44115

Jonathan E. Cowen3
Case Western Reserve University
Cleveland, Ohio 44106

Raymond N. Dominey
University of Richmond
Richmond, Virginia 23173

Abstract

Single-crystal X-ray structures of four nickel dithiocarbamate complexes were determined: the homoleptic mixed-organic bis-dithiocarbamates Ni(S2CN(isopropyl)(benzyl))2, Ni(S2CN(ethyl)(n-butyl))2, and Ni(S2CN(phenyl)(benzyl))2, as well as the heteroleptic mixed-ligand complex Ni(P(phenyl)3)(S2CN(phenyl)(benzyl))Cl. Synthetic, spectroscopic, structural, thermal, and materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni–S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong

1Summer Faculty Fellow, NASA Glenn Research Center.
2Student Intern, NASA Glenn Research Center.
3NASA Graduate Student Researcher, NASA Glenn Research Center.
intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analyses of homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or α-NiS as the major phase; thermolysis under flowing forming gas produced millerite (β-NiS) at 300 °C, godlevskite (Ni9S8) at 325 and 350 °C, and heazlewoodite (Ni3S2) at 400 and 450 °C. Failure to exclude oxygen results in production of nickel oxide and sulfate (at 450 °C). Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as “single-source” precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

Introduction

The structure and properties of metal dithiocarbamates M(S2CNRR′)x and closely related compounds (Refs. 1 to 5) remains an important topical area of research (Refs. 6 to 8). This is due not only to fundamental insights into coordination chemistry to be gained from in-depth studies of dithiocarbamates (Refs. 6 to 8), but also to their wide-ranging, practical applications in agriculture (Refs. 9 and 10), biomedicine (Refs. 10 to 12), surface science (Refs. 12 and 13), and materials science (Refs. 14 to 23). The present study is the most recent report from an ongoing effort to prepare new metal coordination compounds with sulfur-containing (i.e., thiolates or dithiocarbamates) ligands to serve as precursors for metal sulfides, most often for energy conversion (Refs. 17 and 24 to 30).

Typically, after synthesis and characterization, novel compounds have their single-crystal structures determined and their decomposition probed to assess their value as (new) “single-source” precursors for sulfide solid-state, thin-film and/or nanoparticles for possible aerospace applications. Ideally, precursors should be readily prepared from inexpensive starting materials, easily handled (preferably air stable), and/or cleanly decomposed via chemical (vapor) processing to be economically viable (Refs. 16 to 30).

The focus of this technical memorandum concerns the use of dithiocarbamates as precursors for nickel sulfide solid-state materials (Refs. 14 to 17, 19, and 21 to 23). Nickel sulfides exist in numerous stable phases (with a range of Ni:S of 3:2 to 1:2): from Ni3S2 (heazlewoodite) through Ni9S8 (godlevskite) and NiS (hexagonal (α-NiS) or rhombohedral (β-NiS or millerite)), to Ni3S4 (polydymite) and NiS2 (vaesite) (Refs. 31 to 36). This report details the synthesis and characterization of three new Ni(II) unsymmetrically substituted bis-dithiocarbamates: Ni(S2CN(isopropyl)(benzyl))2 1, Ni(S2CN(ethyl)(n-butyl))2 2, and Ni(S2CN(phenyl)(benzyl))2 3; two symmetrically substituted (known) dithiocarbamate complexes: Ni(S2CN(ethyl))2 4 and Ni(S2CN(benzyl))2 5; and a heteroleptic mixed-ligand complex: Ni(P(phenyl)3)(S2CN(phenyl)(benzyl))Cl 6.

The decomposition of five homoleptic dithiocarbamates (1 to 5) under anaerobic or reducing conditions at 300 to 450 °C was studied in detail. The atmosphere-dependent formation of either 1:1 NiS phases or nickel-rich sulfide phases (Ni3S2 or Ni9S8) was consistent with much of the prior literature (Refs. 14 to 17, 19, and 21). Finally, the utility of nickel dithiocarbamates as precursors to produce a variety of sulfide phases in different forms is discussed along with the potential to control product phase(s) and morphology(ies) by choice of precursor and/or processing conditions.

Experimental Details

Unless otherwise indicated, chemicals and solvents were used as received. Galbraith Laboratories, Inc. (Knoxville, TN), performed elemental analyses. All Fourier transform infrared (FTIR) spectra were the average of >100 scans collected at 2 cm⁻¹ resolution from 700 to 4000 cm⁻¹.
Materials and Instruments

JASCO V-550 (University of Richmond) and Perkin-Elmer Lambda-950 model (NASA Glenn Research Center, GRC) instruments were used for electronic absorption or ultraviolet-visible (UV-vis) spectroscopy. FTIR spectra were collected on a Perkin-Elmer RX1 spectrometer (Wheeling Jesuit University, WJU), a Thermo Electron Corporation Nicolet Avatar 320 spectrometer equipped with a SensIR single-bounce Diamond 45° ZnSe thermal horizontal attenuated total reflectance (HATR) crystal (University of Richmond), or a Nicolet 380 spectrophotometer with a germanium single-pass ATR crystal (NASA GRC). A Cahn TG–2131 thermogravimetric analysis (TGA) instrument at Cleveland State University was utilized with a heating rate of 5 °C/min starting at room temperature to 800 °C under flowing nitrogen (Ref. 26). A TA Instruments SPT Q600 TGA was also utilized (WJU) as described previously that included a derivative to obtain temperature of most-rapid weight loss (Ref. 18). Initial mass loss experiments were completed at 400 °C, based upon prior studies (Refs. 14 to 17, 19, and 21 to 23).

Synthesis, Chemical Analysis, and Pyrolysis Weight Loss

Sodium \(N-R-N-R' \)-carbodithioate salts were prepared by the method of von Braun (Ref. 37) and later modified by Duffy (Refs. 38 and 39). Sodium hydroxide (6 g) was added slowly to distilled water (10 mL) cooled in an ice bath. With continued cooling, 0.10 mol of \(N \)-isopropyl-\(N \)-benzylamine, \(N \)-ethyl-\(N \)-butylamine, or \(N \)-phenyl-\(N \)-benzylamine (i.e., \(HN(R)(R') \) with \(R, R' = i-C_3H_7 \) (Ph), \(C_2H_5 \) (Et), \(n-C_4H_9 \) (\(n \)-Bu); Aldrich, IR grade) was added slowly with rapid stirring, followed by reagent-grade CS\(_2\) (6.0 mL, 0.10 mol, Fisher Scientific). After stirring and cooling for 2 h, light-brown crystals were separated and dissolved in boiling distilled water (20 mL). The mixture was cooled, and after addition of absolute ethanol (5 mL), the resulting crystals were separated by filtration, washed repeatedly with petroleum ether, air-dried overnight, and used without further purification.

Synthesis of unsymmetrical dithiocarbamates began with mixing aqueous solutions of nickel(II) chloride hexahydrate, NiCl\(_2\)-6H\(_2\)O (0.714 g, 3 mmol), and a sodium \(N-R-N-R' \)-carbodithioate salt (6 mmol). Bright green microcrystals formed immediately and were collected on a sintered-glass filter. The solid was transferred to a beaker and dissolved in CHCl\(_3\) (50 mL). Any remaining aqueous fraction was discarded and the CHCl\(_3\) solution was transferred to a filter flask. After addition of hexanes (50 mL), the solvent was evaporated under reduced pressure. When most of the CHCl\(_3\) was removed, fine green crystals of product precipitated and were collected on a sintered-glass filter. The wet crystals were washed with hexanes until the filtrate was colorless. The compound was dried overnight; a typical yield of dithiocarbamates was ~70 percent.

A simpler synthetic method was used to prepare two symmetrically substituted compounds: bis-(di-\(N \)-ethyl-carbodithioato)nickel(II) \(4 \)—\(\text{Ni(S}_2\text{CN(C}_2\text{H}_5)_2\text{)}_2 \), abbreviated as \(\text{Ni(dtcEt}_2\text{)}_2 \)—which is structurally related to \(2 \), and bis-(di-\(N \)-benzyl-carbodithioato)nickel(II) \(5 \)—\(\text{Ni(S}_2\text{CN(CH}_2\text{C}_6\text{H}_5)_2\text{)}_2 \), abbreviated as \(\text{Ni(dtcBz}_2\text{)}_2 \)—which is structurally related to \(3 \). These are prepared by reacting NiCl\(_2\)-6H\(_2\)O with Na(S\(_2\text{CNEt}_2\)) or Na(S\(_2\text{CNBz}_2\)), respectively. Isolation and purification of the resultant products were similar to the procedure described above for compounds \(1 \) to \(3 \).

Chloro(\(N \)-phenyl-\(N \)-benzylcarbodithioato)(triphenylphosphine)nickel(II) \(6 \)—\(\text{NiP(C}_6\text{H}_5)_3\text{S}_2\text{CN(C}_6\text{H}_5\text{)(CH}_2\text{C}_6\text{H}_5\text{)}_2\text{Cl} \), abbreviated as \(\text{NiPPh}_3\text{(dtcPhBz)}\text{Cl} \)—was prepared by dissolving Na(S\(_2\text{CNPhBz}\)) (0.575 g, 1.00 mmol), triphenylphosphine, PPh\(_3\) (0.525 g, 2.0 mmol), and NiCl\(_2\)-6H\(_2\)O (0.238 g, 1.00 mmol) in boiling absolute ethanol (~20 mL). The solution was stirred at reflux for 30 min. As the solution began to cool, a fine green precipitate settled to the bottom of the beaker. The solution was filtered through a medium sintered glass filter to remove the precipitate. The red-violet solution was allowed to cool to room temperature and then cooled further in an ice bath. After 30 min, red-violet crystals formed, and \(n \)-heptane (10 mL) was added to further precipitate the complex. The solid was recovered by filtration through a medium sintered-glass filter, washed with \(n \)-heptane, and air dried overnight.
TABLE I.—ELEMENTAL ANALYSES AND PYROLYSIS WEIGHT LOSS DATA OF DITHIOCARBAMATES STUDIED

<table>
<thead>
<tr>
<th>Dithiocarbamate</th>
<th>Structural formula</th>
<th>Empirical formula</th>
<th>Powder color</th>
<th>Molecular weight</th>
<th>Analysis</th>
<th>Mass remaining (calculated),a percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>1 Ni(S-CN-iPrBz)2</td>
<td>C22H28N2S4Ni</td>
<td>Green</td>
<td>507.43</td>
<td>52.1 (50.4)</td>
<td>5.6 (5.2)</td>
<td>5.5 (5.3)</td>
</tr>
<tr>
<td>2a Ni(S-CN-NEtbu)2</td>
<td>C14H28N2S4Ni</td>
<td>Dk. green</td>
<td>411.34</td>
<td>40.9 (40.8)</td>
<td>6.9 (6.6)</td>
<td>6.8 (6.8)</td>
</tr>
<tr>
<td>3 Ni(S-CNPhBz)2</td>
<td>C28H24N2S4Ni</td>
<td>Green</td>
<td>575.47</td>
<td>58.4 (57.9)</td>
<td>4.2 (4.2)</td>
<td>4.9 (4.9)</td>
</tr>
<tr>
<td>4 Ni(S-CNEt2)2</td>
<td>C10H20N2S4Ni</td>
<td>Dk. green</td>
<td>355.24</td>
<td>33.8 (34.0)</td>
<td>5.7 (5.7)</td>
<td>7.9 (7.9)</td>
</tr>
<tr>
<td>5 Ni(S-CNPh2)2</td>
<td>C30H28N2S4Ni</td>
<td>Green</td>
<td>603.51</td>
<td>59.7 (60.6)</td>
<td>4.7 (4.7)</td>
<td>4.6 (5.0)</td>
</tr>
<tr>
<td>6 NiPPh3(S-CNPhBz)Cl</td>
<td>C32H27NS2PClNi</td>
<td>Violet</td>
<td>614.82</td>
<td>62.5 (61.0)</td>
<td>4.4 (4.5)</td>
<td>2.3 (2.4)</td>
</tr>
</tbody>
</table>

aPr is i-C3H7; Bz, CH2C6H5; Et, C2H5; n-Bu, n-C4H9; and Ph, C6H5.
bAt 400 °C; calculated for NiS.

Results of elemental analyses and pyrolysis weight loss (except for 4, vide infra) are reported in Table I. The most likely cause of the low carbon analyses for 1 and 6 is precipitation of unreacted NiCl2·6H2O along with the dithiocarbamate complexes. Given the goals of this study and satisfactory confirmation from other characterization methods, further purification was not attempted.

X-Ray Crystallography

Microcrystals of each compound were dissolved in hot ethanol, and single crystals suitable for X-ray diffraction (XRD) grew by slow evaporation of the solvent upon standing for three weeks at room temperature. Crystals of 1 were dark green equant, 2a were dichroic orange prismatic, 3 were dichroic green prismatic, and 6 were violet prismatic. Single crystals were cemented to a quartz fiber with epoxy glue in a random orientation. X-ray intensity data were collected at 150 K on a Nonius Kappa CCD X-ray diffractometer system using graphite monochromated Mo Kα radiation (λ = 0.71073 Å).

Refinement was performed on a Digital Equipment Corporation AlphaServer 2100 using SHELX-97 (Ref. 40). Cell constants for data collection were obtained from least-squares refinement and the space groups were determined using the program XPREP (Ref. 40). Frames were integrated with DENZO-SMN (Ref. 41). Lorentz and polarization corrections were applied to the data. Structures were solved using the program PATTY in DIRDIF-99 (Ref. 42) for compounds 1, 2a, and 6 and by direct methods using SIR-2004 (Ref. 43) for compound 3. Scattering factors were taken from the International Tables for Crystallography (Ref. 44). Crystallographic drawings were produced using ORTEP (Ref. 45) and PLUTO (Ref. 46).

The crystallographic information is summarized in Table II. ORTEPs showing the atom labeling schemes are given in Figures 1 to 4 and cell diagrams are shown in Figure 5. Deposition numbers for crystallographic information files deposited with the Cambridge Crystallographic Data Centre are given in Table II.

Nickel Dithiocarbamate Thermolysis and Pyrolysate Characterization

For thermolyses, compounds 1 to 5 were packed into alumina boats and heated in a tube furnace with flowing (150 cm3/min or sccm) nitrogen or forming gas (4% H2 in Argon (Ar)) at 300 to 450 °C for an hour. The pyrolysis temperature was chosen based upon data from TGA experiments showing significant weight loss and essentially complete decomposition at temperatures below 400 °C. Flowing nitrogen provided an inert atmosphere to preclude interaction with oxygen; forming gas provided for further reaction and removal of sulfur. Scanning electron microscopy demonstrated production of nanocrystals from microcrystalline dithiocarbamates, and XRD (powder) of pyrolysates identified major phases of (nano)crystalline materials.
Scanning electron microscopy was performed on a Hitachi 3000 instrument at NASA GRC, transmission electron microscopy (TEM) on a Hitachi H8000 at the Electron Microscopy Center at the University of South Carolina. Powder XRD was performed on a PANalytical X’pert Pro system (NASA GRC). Thermolysis was accomplished using a sealed tube furnace under flowing nitrogen or forming gas (4 percent hydrogen in argon) at NASA GRC; this is a simplified version of a system described previously (Ref. 18).

Figure 1.—ORTEP (Ref. 45) diagram with 30 percent thermal ellipsoids and atomic labeling scheme of synthesized dithiocarbamate Ni(S₂CN(isopropyl)(benzyl))₂ 1.

Figure 2.—ORTEP (Ref. 45) diagram with 30 percent thermal ellipsoids and atomic labeling scheme of synthesized dithiocarbamate Ni(S₂CN(ethyl)(n-butyl))₂ 2a.
Figure 3.—ORTEP (Ref. 45) diagram with 30 percent thermal ellipsoids and atomic labeling scheme of synthesized dithiocarbamate Ni(S₂CN(phenyl)(benzyl))₂ 3.

Figure 4.—ORTEP (Ref. 45) diagram with 30 percent thermal ellipsoids and atomic labeling scheme of synthesized dithiocarbamate Ni(P(phenyl)₃)(S₂CN(phenyl)(benzyl))Cl 6.
Figure 5.—Cell diagram stereoviews of synthesized dithiocarbamates. Nickel is represented by green circles; sulfur, by red; phosphorus, by magenta; carbon, by gray; nitrogen, by blue; and hydrogen, by cyan. (a) Ni(S₂CN(isopropyl)(benzyl))₂ 1. (b) Ni(S₂CN(ethyl)(n-butyl))₂ 2a. (c) Ni(S₂CN(phenyl)(benzyl))₂ 3. (d) Ni(P(phenyl)₃)(S₂CN(phenyl)(benzyl))Cl 6.
TABLE II.—SUMMARY OF CRYSTALLOGRAPHIC DATA FOR COMPOUNDS 1, 2a, 3, AND 6

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2a</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₂₂H₂₈N₂NiS₄</td>
<td>C₁₄H₂₈N₂NiS₄</td>
<td>C₂₈H₂₄N₂NiS₄</td>
<td>C₃₂H₂₇ClNNiPS₂</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>507.43</td>
<td>411.34</td>
<td>575.46</td>
<td>614.82</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n (No. 14)</td>
<td>P2₁/n (No. 14)</td>
<td>P2₁/c (No. 14)</td>
<td>P2₁/n (No. 14)</td>
</tr>
<tr>
<td>Crystal data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, Å</td>
<td>10.5407(2)</td>
<td>8.4442(5)</td>
<td>10.0329(6)</td>
<td>13.9479(3)</td>
</tr>
<tr>
<td>b, Å</td>
<td>11.1598(2)</td>
<td>8.4633(6)</td>
<td>11.7342(7)</td>
<td>9.7908(3)</td>
</tr>
<tr>
<td>c, Å</td>
<td>19.9164(5)</td>
<td>13.5293(9)</td>
<td>11.4362(4)</td>
<td>22.4583(7)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>92.3629(8)</td>
<td>94.626(4)</td>
<td>92.709(8)</td>
<td>107.7183(12)</td>
</tr>
<tr>
<td>γ, deg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, V, Å³</td>
<td>2340.82(8)</td>
<td>963.73(11)</td>
<td>1344.86(12)</td>
<td>2921.45(14)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Density, D₉ₙ, g·cm⁻³</td>
<td>1.440</td>
<td>1.417</td>
<td>1.421</td>
<td>1.398</td>
</tr>
<tr>
<td>Absorption coeff., μ, mm⁻¹</td>
<td>1.186</td>
<td>1.423</td>
<td>1.042</td>
<td>0.972</td>
</tr>
<tr>
<td>Structure factor, F(000)</td>
<td>1064</td>
<td>436</td>
<td>596</td>
<td>1272</td>
</tr>
<tr>
<td>Crystal size, mm</td>
<td>0.30×0.30×0.30</td>
<td>0.30×0.30×0.18</td>
<td>0.44×0.35×0.28</td>
<td>0.44×0.35×0.31</td>
</tr>
<tr>
<td>Temperature, K</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>θ range collected, deg</td>
<td>2.05 to 27.48</td>
<td>2.41 to 27.47</td>
<td>2.49 to 27.50</td>
<td>2.04 to 27.48</td>
</tr>
<tr>
<td>Data collected</td>
<td>17437</td>
<td>7118</td>
<td>18305</td>
<td>20715</td>
</tr>
<tr>
<td>Unique data (Rᵤᵤ)</td>
<td>5297 (0.027)</td>
<td>2161 (0.029)</td>
<td>3024 (0.037)</td>
<td>6653 (0.048)</td>
</tr>
<tr>
<td>Transmission factors, Tₘₘₙₙ, Tₘᵦₘₙₙ</td>
<td>0.70, 0.61</td>
<td>0.77, 0.67</td>
<td>0.75, 0.67</td>
<td>0.74, 0.65</td>
</tr>
<tr>
<td>Data with I > 2.0σ(I)</td>
<td>4106</td>
<td>1682</td>
<td>2394</td>
<td>4428</td>
</tr>
<tr>
<td>Data refinement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R(Fₐₐ)</td>
<td>0.035</td>
<td>0.037</td>
<td>0.030</td>
<td>0.045</td>
</tr>
<tr>
<td>wR(F₀₂)</td>
<td>0.080</td>
<td>0.100</td>
<td>0.072</td>
<td>0.106</td>
</tr>
<tr>
<td>Largest difference peak and hole, e Å⁻³</td>
<td>0.37, –0.65</td>
<td>0.58, –0.72</td>
<td>0.36, –0.32</td>
<td>0.66, –0.58</td>
</tr>
<tr>
<td>Goodness of fit (GOF) on F²</td>
<td>0.993</td>
<td>1.020</td>
<td>1.071</td>
<td>1.025</td>
</tr>
<tr>
<td>CCDC deposit number⁴</td>
<td>761180</td>
<td>761181</td>
<td>601390</td>
<td>761182</td>
</tr>
</tbody>
</table>

*Non-dispersive F(000) is a positive number and counts the effective number of electrons in the unit cell.

\[R = \frac{\sum |F_0| - |F_c|}{\sum |F_0|} \text{ for } F_0^2 > 2\sigma(F_0^2) \].

\[wR = \left(\frac{\sum w(|F_0| - |F_c|)^2}{\sum w(F_0^2)^2}\right)^{1/2} \].

CCDC is the Cambridge Crystallographic Data Centre.

Analysis and Characterization

Spectral analysis of the four unsymmetrically substituted complexes is summarized in Table III. Electronic absorption (UV-vis) spectra were determined from saturated cyclohexane (250 to 550 nm) or 3 mmol chloroform (450 to 800 nm) solutions of compounds 1 to 3 and 6. Also listed in Table III are infrared spectral data from two of the three most often-studied regions (Refs. 1 to 5 and 51) near energies determined (Ref. 52) for C=S (1000±50 cm⁻¹) and C=N (“thiureide” 1500±50 cm⁻¹) dithiocarbamate bonds. Selected bond lengths and bond angles for compounds 1, 2, 3, and 6 are given in Table IV.
TABLE III—SPECTRAL DATA FOR NICKEL DITHIOCARBAMATE COMPLEXES (1 TO 3 AND 6)

<table>
<thead>
<tr>
<th>Compound*</th>
<th>Infrared bands, cm⁻¹</th>
<th>UV-visible bands cm⁻¹×10³ nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v(C=S) 950–1050</td>
<td>v(C=N) 1450–1550</td>
</tr>
<tr>
<td>Ni(S₂CNPrBz)₂ 1</td>
<td>1030w ~980(sh) 962m</td>
<td>15.9 20.4(sh) 25.1 30.5 40.3 47.6 630 490 398 328 248 215</td>
</tr>
<tr>
<td>Ni(S₂CNEt²Bu)₂ 2a</td>
<td>1035w 1015w 993m 954m</td>
<td>15.9 20.4(sh) 25.5 30.7 40.3 46.5(sh) 630 490 326 248 215</td>
</tr>
<tr>
<td>Ni(S₂CNPhBz)₂ 3</td>
<td>1030m 999w 975w 950m</td>
<td>15.9 20.4(sh) 23.8 30.3 39.7 47.6 630 490 420 330 252 215</td>
</tr>
<tr>
<td>Ni(PPh₃)(S₂CNPhBz)Cl 6</td>
<td>1028w 995m 970w</td>
<td>19.2 24.0 29.9 39.5 47.6 520 416 334 252 210</td>
</tr>
</tbody>
</table>

*Pr is isopropyl, Bz is benzyl, Et is ethyl, Bu is butyl, and Ph is phenyl.

TABLE IV.—SELECTED AVERAGE BOND LENGTHS (Å) AND ANGLES (°) IN COMPOUNDS 1, 2, 3, AND 6

<table>
<thead>
<tr>
<th>Bond</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length,Å</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni–S</td>
<td>2.2040</td>
<td>2.2002</td>
<td>2.2033</td>
<td>2.2020</td>
<td>2.1878(8)²</td>
</tr>
<tr>
<td>S–C</td>
<td>1.7235</td>
<td>1.720(2)</td>
<td>1.714</td>
<td>1.7194</td>
<td>1.718</td>
</tr>
<tr>
<td>N–CS₂</td>
<td>1.3185</td>
<td>1.321(3)</td>
<td>1.319(3)</td>
<td>1.318</td>
<td>1.313(4)</td>
</tr>
<tr>
<td>N–Ph</td>
<td>1.4725</td>
<td>------</td>
<td>------</td>
<td>1.445</td>
<td>1.456(4)</td>
</tr>
<tr>
<td>N–CH</td>
<td>1.492</td>
<td>1.471</td>
<td>1.4735</td>
<td>1.475</td>
<td>1.478(3)</td>
</tr>
<tr>
<td>Alkyl C–C</td>
<td>1.5205</td>
<td>1.521</td>
<td>1.5095</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C–Ph</td>
<td>1.5135</td>
<td>------</td>
<td>------</td>
<td>1.509(2)</td>
<td>1.510(4)</td>
</tr>
<tr>
<td>Ni–Cl</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>2.1800(8)</td>
</tr>
<tr>
<td>Ni–P</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>2.2010(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle,°</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S–Ni–S</td>
<td>79.281</td>
<td>79.28(2)</td>
<td>79.18</td>
<td>79.55(1)</td>
<td>78.31(3)</td>
</tr>
<tr>
<td>Ni–S–C</td>
<td>85.555</td>
<td>85.42</td>
<td>85.40</td>
<td>85.20</td>
<td>86.48</td>
</tr>
<tr>
<td>C–N–CS₂</td>
<td>121.08</td>
<td>121.44</td>
<td>121.55</td>
<td>121.15</td>
<td>121.1</td>
</tr>
<tr>
<td>S–C–S</td>
<td>117.12</td>
<td>117.48</td>
<td>117.5(1)</td>
<td>117.9(2)</td>
<td>117.8(2)</td>
</tr>
<tr>
<td>S–C–N</td>
<td>125.33</td>
<td>125.06</td>
<td>124.95</td>
<td>125.0</td>
<td>125.65</td>
</tr>
</tbody>
</table>

*Values reported with standard deviations are unique.

²S1 (trans to Cl).

⁴S2 (trans to P).
Spectroscopic Analysis

For compounds 1 to 3 with square-planar d\(^8\) NiS\(_4\) configurations, two low-energy weak (\(\epsilon \leq 200\)) absorptions at 630 and 490 nm have been attributed to d-d bands (Refs. 47 and 48). The next higher energy absorption at 392 to 420 nm, has been assigned to a metal-to-ligand charge transfer (MLCT, or d\(\rightarrow\)L\(\pi^*\)) band (Refs. 47 and 48). The three intense high-energy bands arise from intraligand transitions of the coordinated dithiocarbamates and/or ligand-to-metal charge transfer (LMCT) bands (Refs. 47 to 49). For compound 6 the lowest energy band is assigned to a d-d band, the band at 416 nm to a triphenylphosphine LMCT band, and the three intense UV bands as above to intraligand or LMCT transitions (Ref. 50).

While the number and energies of C=S and C=N infrared bands serve as one simple guide (after Bonati and Ugo (Ref. 53)) to determining coordination mode of dithiocarbamate ligands (chelating vs. monodentate), it is no longer thought to be an ideal heuristic for determining the coordination modes of dithiocarbamate complexes, especially for solid-state spectra, owing to symmetry considerations, and more complicated N-substituents (Refs. 5 and 51) that contribute a C–N stretch in the range of 1020 to 1090 cm\(^{-1}\). The potential for combination bands and/or Fermi resonance from this band as well as the fundamental (aromatic ring stretch, 1450 to 1510 cm\(^{-1}\)) and overtone (first overtone of C–H out-of-plane bending for monosubstituted aromatic rings, 730 to 770 cm\(^{-1}\)) vibrations involving aromatic moieties of the dithiocarbamate ligands, for example, may further complicate the analysis and may account for the slightly lower stretching frequency and multiple strong peaks in the thiureide region of the FTIR spectra of compounds 1, 3, and 6 (Ref. 54).

All four unsymmetrically substituted complexes have bands of medium intensity in the region of 730 to 745 cm\(^{-1}\). The first overtone of this band would be between 1460 to 1490 cm\(^{-1}\), in fact there is a band in this energy region observed for all four complexes. In the case of compound 2, the peak at \(\sim 1460\) cm\(^{-1}\), could be assigned to a first overtone of a \(-(CH_2)_n-\) methylene rocking band for \(n \geq 3\) (720 to 750 cm\(^{-1}\)) as would be expected for a "Bu-containing ligand and/or a methylene C–H bend fundamental band (1445 to 1485 cm\(^{-1}\)) (Ref. 54). Prior reviews and more detailed prior literature on this topic should be consulted for more in-depth discussion(s) (Refs. 1 to 5 and 51 to 55).

X-Ray Structural Characterization and Analysis

Structural determinations for the four complexes (Table IV) allow for a comparison to the abundant literature for structures of dithiocarbamate complexes related to both homoleptic (1 to 3) (Refs. 5, 19, 22, and 56 to 62) and heteroleptic (6) (Refs. 63 to 65) compounds of this study (Table V). A structure determination for Ni(S\(_2\)CNEt\(_n\)Bu\(_2\)) (2b) has been reported previously (Ref. 60) with a different unit cell than our data (2a) although in the same space group and is included here for comparison. The asymmetric units of compounds 2a and 3 comprise one-half of these molecules with the metal atoms lying on inversion centers. As expected, the phenyl groups in compounds 1, 3, and 6 are essentially planar. The butyl chain in 2a adopts an all-anti conformation, and the butyl and ethyl chains also are directed to opposite sides of the core structure; this should be the lowest energy conformation, minimizing steric interactions. The nickel atoms necessarily reside in the plane of the ligands in 2a and 3 due to the symmetry, but they pucker slightly to lie above this plane by 0.0212(3) Å in 1 and 0.0446(5) Å in 6.

The average Ni–S bond lengths for the three homoleptic (2.2020(5) to 2.2084(6) Å) and the mixed-ligand 6 (2.2110(8) Å) complexes are unexceptional. Of the three homoleptic species, the bis-isopropylbenzyl complex (1) is the most asymmetric with a difference in Ni–S bond lengths of 0.0118(5) Å, similar to several other homoleptic unsymmetrical complexes involving mixed (aryl-alkyl or proton-alkyl) substituents (R-R’ = "Bu-Bz, H-Pr, H-adamantyl, methyl-Ph) (Refs. 22, and 57 to 59). The unsymmetrically substituted compounds (2a and 3) with either two aliphatic or aromatic substituents have nearly symmetrical Ni–S coordination, typical of other nickel dithiocarbamates (Refs. 5, 19, 56, and 60 to 62).
Table V. — Average Bond Distances and Angles for Unsymmetrical Ni Dithiocarbamate Complexes\(^a\)\(^b\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(S2CN(H)Me)(_2)</td>
<td>2.200</td>
<td>79.2</td>
<td>1.71</td>
<td>109.8</td>
<td>-----</td>
<td>1.30</td>
<td>1.47</td>
</tr>
<tr>
<td>Ni(S2CNPr)(_2)</td>
<td>2.198</td>
<td>79.92</td>
<td>1.715</td>
<td>110.7</td>
<td>84.5</td>
<td>1.295</td>
<td>1.455</td>
</tr>
<tr>
<td>Ni(S2CN(H)Adm)(^d)</td>
<td>2.201</td>
<td>79.12</td>
<td>1.725</td>
<td>108.69</td>
<td>86.05</td>
<td>1.314</td>
<td>1.473</td>
</tr>
<tr>
<td>Ni(S2CNMeBu)(_2)</td>
<td>2.203</td>
<td>79.20</td>
<td>1.716</td>
<td>109.8</td>
<td>-----</td>
<td>1.315</td>
<td>-----</td>
</tr>
<tr>
<td>Ni(S2CNMePh)(_2)</td>
<td>2.203</td>
<td>79.3</td>
<td>1.72</td>
<td>109.3</td>
<td>85.6</td>
<td>1.30</td>
<td>1.48</td>
</tr>
<tr>
<td>Ni(S2CNMe(_2)Bu)(_2)</td>
<td>2.2033</td>
<td>79.20</td>
<td>1.716</td>
<td>109.8</td>
<td>-----</td>
<td>1.315</td>
<td>-----</td>
</tr>
<tr>
<td>Ni(S2CNMe(_2)Bu)(_2)</td>
<td>2.2084</td>
<td>79.18</td>
<td>1.714</td>
<td>108.4(6)</td>
<td>86.3</td>
<td>1.326(14)</td>
<td>1.485</td>
</tr>
<tr>
<td>Ni(S2CNMePh)(_2)</td>
<td>2.2040</td>
<td>79.29</td>
<td>1.724</td>
<td>109.4</td>
<td>85.69</td>
<td>1.319</td>
<td>1.482</td>
</tr>
<tr>
<td>Ni(S2CNMe(_2)Bu)(_2)</td>
<td>2.2041</td>
<td>79.20</td>
<td>1.715</td>
<td>109.9</td>
<td>85.4</td>
<td>1.322</td>
<td>1.482</td>
</tr>
<tr>
<td>Ni(S2CNMe(_2)Bu)(_2)</td>
<td>2.205</td>
<td>79.48</td>
<td>1.731</td>
<td>109.0</td>
<td>85.8</td>
<td>1.292</td>
<td>1.487</td>
</tr>
<tr>
<td>Ni(S2CNiPrBz)(_2)</td>
<td>2.2040</td>
<td>79.29</td>
<td>1.724</td>
<td>109.4</td>
<td>85.69</td>
<td>1.319</td>
<td>1.482</td>
</tr>
<tr>
<td>Ni(S2CNiPrBz)(_2)</td>
<td>2.2041</td>
<td>79.20</td>
<td>1.715</td>
<td>109.9</td>
<td>85.4</td>
<td>1.322</td>
<td>1.482</td>
</tr>
<tr>
<td>Ni(S2CNiPrBz)I</td>
<td>2.2087(12)</td>
<td>79.13(5)</td>
<td>1.717</td>
<td>107.7(2)</td>
<td>87.1</td>
<td>1.325(4)</td>
<td>1.477</td>
</tr>
</tbody>
</table>

\(^a\)Values with standard deviations are unique.
\(^b\)Temperature of data collection 293±2 K unless otherwise specified.
\(^c\)Adm is adamantyl; Cy is cyclohexyl.
\(^d\)Temperature of data collection 120 K.
\(^e\)Temperature of data collection 150 K.
\(^f\)Temperature of data collection 200 K.
\(^g\)Temperature of data collection 100 K.
\(^h\)Bond trans to phosphorus.

The Ni–S bonding in compound 6 and analogous complexes (Refs. 63 to 65) is quite asymmetric, however, with the Ni–S(1) bond trans to the electron-withdrawing chloride being shorter than the Ni–S bond trans to the phosphine by 0.0464(8) Å. This asymmetry has been observed previously for structurally related neutral compounds including symmetrically substituted heterocyclic complexes Ni(PPh\(_3\))(S\(_2\)CNRR\(_\prime\))(X), R,R\(_\prime\)= Et, \(^{15}\)Bu, (CH\(_2\))\(_4\); X = Cl, Br, I, NCS (Refs. 66 to 68). It can be ascribed to a structural trans-effect, phosphines being stronger trans-influencing ligands than chloride as found commonly in square planar complexes of the other metals in the same family (Pd and Pt) (Ref. 69).

Bond lengths involving the sp\(^2\) hybridized carbons (C1 or C10) near the core of the dithiocarbamate complexes are typically 1.71(1) to 1.73(2) Å for S=C and 1.29(1) to 1.33(1) Å for N=C, consistent with a number of previously reported homoleptic and heteroleptic complexes (Refs. 5, 19, 22, and 56 to 68). As expected, the N–C(sp\(^3\)) single bonds attached to the organic substituents are longer by ~0.15 Å than the N–CS\(_2\) bond and are typical (1.47±0.02 Å) for all four complexes (Ref. 5). Bond lengths near 1.3 Å found for the N–CS\(_2\) bonds are more characteristic of N=C double bonds (Ref. 70) and indicate considerable double bond character to be present between N and the CS\(_2\) carbon in these complexes (Ref. 58). A hybridization of sp\(^2\) also is consistent with the observation of small pyramidalization of the nitrogens, which are nearly planar in 2a and 3 (Table VI). The effect would be to shift electron density from nitrogen to sulfur, placing the nickel atom in a relatively electron-rich environment. The greatest pyramidalization is found in 1, due possibly in part to the steric demands of the isopropyl group. However, since the nitrogens in 3 and 6 are similarly substituted yet pyramidalize to different degrees, other effects such as molecular packing likely contribute as well. Small pyramidalization about nitrogen is
TABLE VI.—DISTANCES (Å) OF ATOMS FROM THE SPECIFIED PLANES

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ni from ligands</th>
<th>C(S$_2$) from ligands</th>
<th>N from attached C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ni(S$_2$CNPrBz)$_2$</td>
<td>0.0212(3)</td>
<td>0.0221(19), 0.045(2)</td>
<td>0.081(2), 0.0763(19)</td>
</tr>
<tr>
<td>2a Ni(S$_2$CNEtnBu)$_2$</td>
<td>0</td>
<td>0.020(3)</td>
<td>0.016(2)</td>
</tr>
<tr>
<td>2b Ni(S$_2$CNEtnBu)$_2$</td>
<td>0</td>
<td>0.007(3)</td>
<td>0.009(3)</td>
</tr>
<tr>
<td>3 Ni(S$_2$CNPhBz)$_2$</td>
<td>0</td>
<td>0.011(2)</td>
<td>0.0367(16)</td>
</tr>
<tr>
<td>6 Ni(PPh$_3$)(S$_2$CNPhBz)Cl</td>
<td>0.0446(5)</td>
<td>0.004(3)</td>
<td>0.004(3)</td>
</tr>
</tbody>
</table>

*Coordinates from Reference 60.

Figure 6.—Transoid orientation of the alky groups (R,R$'$) in synthesized dithiocarbamates Ni(S$_2$CN(isopropyl)(benzyl))$_2$, Ni(S$_2$CN(ethyl)(n-butyl))$_2$ 2a, Ni(S$_2$CN(phenyl)(benzyl))$_2$ 3, and (d) Ni(P(phenyl)$_3$)(S$_2$CN(phenyl)(benzyl))Cl 6.

common in sp2-hybridized aromatic amines such as carbazoles and occurs with little sacrifice of energy (Ref. 71). Since the nitrogen atoms are nearly planar and lie close to the plane of the inorganic core atoms, cisoid and transoid conformations are possible for the two alkyl or aryl substituents R,R$'$ on nitrogen in the homoleptic derivatives 1 to 3. The transoid geometry, in which the same organic groups are located on opposite sides of the structure, is found for all three (Fig. 6). This orientation should minimize steric interactions and is expected to be lowest in energy.

The chelated S–Ni–S bond angle for the three homoleptic compounds are similar (79.28(2) to 79.55(2)$^\circ$), typical for homoleptic complexes reported in the literature which average 79.5±0.4$^\circ$ (Refs. 5, 19, 22, and 56 to 62). The heteroleptic compound 6 has a smaller bite of 78.31(12)$^\circ$, within the margin of error for related mixed-ligand triphenylphosphine dithiocarbamate (pseudo)halide complexes, with an average bond angle of 78.7±0.4$^\circ$ (Refs. 63 to 68). The S–C–S bond angle of 110.04$^\circ$ for 3 is similar to that of 1 and 2a and is typical for asymmetrically substituted homoleptic compounds (Refs. 5, 19, 22, and 56 to 62). This angle is more than 1$^\circ$ smaller in 6, which like 3 also bears benzyl and phenyl organic residues, and corresponds to an S–Ni–S angle that is smaller by about the same amount, consistent with observations for other heteroleptic compounds (Refs. 63 to 68). The smaller bite angles about nickel and carbon in compound 6 are probably once again attributable to steric effects, here involving the five phenyl groups.

The Ni–S–C bond angles for 1 to 3 of 85.20(6) to 85.68(7)$^\circ$ are in the midrange of 85.5±0.5$^\circ$ observed for other homoleptic compounds (Refs. 5, 19, 22, and 56 to 62), and the slightly wider angle found in 6 of 86.5(1)$^\circ$ is typical of the heteroleptic species (Refs. 63 to 68). Slight differences in the shape of the central ring of the two types of compounds could be a result of the effect of electron withdrawing (pseudo-)halides. Bond lengths and angles outside of the core ring structure vary considerably as there are a large number of structural types; more overarching analyses of bonding-structure correlations in dithiocarbamates and related complexes as well as potential correlations to spectroscopy have been addressed previously (Refs. 1 to 5).

The structures reveal only weak intermolecular interactions. Putative weak intermolecular hydrogen bonds to sulfur with S–H$'$ distances less than the sum of the van der Waals radii (3.0 Å) are found in 1, 2a, and 6, whereas the interactions in 3 occur just beyond this distance (Table VII). The closest contacts are found in 1 (2.824 Å) and in 2a (2.631 Å), indicating that steric effects involving the phenyl groups likely prevent as close an approach to the core ring in 3 and 6. Two additional weak hydrogen bonds involving Cl also are present in 6 with Cl–H$'$ distances near the sum of the van der Waals radii (2.95 Å).
The interaction diagrams in Figure 7 indicate that the nickel atoms have no close intermolecular contacts despite the coordination being essentially planar. Instead, the organic moieties of adjacent molecules fit hand-in-glove in the region about the open axial coordination sites. Steric effects arising from the organic groups would be present here as well, and in 1 and 6 intramolecular hydrogens approach the nickel atoms (Table VII), further obstructing the coordination site about the plane of the inorganic core.

However, nickel exhibits low propensity for axial coordination relative to copper and zinc in related bis-diethylidithiocarbamate compounds (Ref. 72), which likely plays a large role in these heteroleptic analogues as well. The absence of stronger intermolecular interactions is responsible for the volatility of the nickel-containing compounds as discussed below.

Comparison of the two modifications of compound 2 reveals that the unit cell volume (1002.23 (18) Å³) reported previously for 2b (Ref. 60) is 4 percent larger than that (963.73(11) Å³) for the structure 2a determined here. A smaller cell is preferable as a larger volume allows for greater thermal motion and other disorder, and large temperature factors may afford bond distances smaller than the actual values (Ref. 73). Indeed, the isotropic temperature factors on the refined atoms of the published structure are about twice as large as those on corresponding atoms of structure 2a with the smaller volume, and 10 of the 11 unique bond distances between refined positions reported for modification 2b are smaller than those determined for 2a. More efficient packing in the smaller cell also would allow greater intermolecular interactions, decreasing volatility as discussed below. Otherwise, the structures of the two modifications are similar, with the most significant difference (over 4°) being the dihedral angle formed between the planes of the core structure and the aminoisopropyl group (Table VIII).
Figure 7.—Interaction diagrams showing close contacts to the core structures of synthesized dithiocarbamates. Nickel is represented by green circles; sulfur, by red; phosphorus, by magenta; carbon, by gray; nitrogen, by blue; and hydrogen, by cyan. (a) Ni(S₂CN(isopropyl)(benzyl))₂ 1. (b) Ni(S₂CN(ethyl)(n-butyl))₂ 2a. (c) Ni(S₂CN(phenyl)(benzyl))₂ 3. (d) Ni(P(phenyl)]₃)(S₂CN(phenyl)(benzyl))Cl 6.

<table>
<thead>
<tr>
<th>TABLE VIII.—DIHEDRAL ANGLES (°) BETWEEN SELECTED PLANES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Ni(dtcPrBz)₂</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ni(dtcEt₄Bu)₂</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ni(dtcPhBz)₂</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ni(dtcPhBz)(PPh₃)Cl</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Corresponding positions for 2b, with coordinates from Reference 60.
Thermal Analysis

TGA of metal dithiocarbamates, particularly bis(diorganodithio-carbamato)nickel(II) complexes, has been the topic of considerable research (Refs. 5, 15, 21, and 74 to 76). As stated in the introduction, research of numerous groups has focused on nickel(II) dithiocarbamates as precursors for various nickel sulfide phases (Refs. 14 to 17, 19, 21 to 23, and 77). TGA studies of nickel dithiocarbamates often yield complex results that are quite dependent upon molecular structural and experimental details (Ref. 75). In the intervening years after publication of a recent definitive review (Ref. 5), interest in decomposition of nickel dithiocarbamates and identification of nickel-containing products (Refs. 21 to 23, 50, 58, 64, and 77) has presented a variety of results and interpretations that encourage additional investigation. A summary of thermogravimetric results for the complexes 1 to 3, 5, and 6 studied is reported in Table IX; TGA plots are shown in Figure 8. Plots of the experimental results are reported in percentage of the original mass remaining, as is the first derivative of the percent mass remaining as a function of temperature; all derivative plots are to the same scale.

<table>
<thead>
<tr>
<th>Compound (molecular weight)</th>
<th>Percent residuea (400 °C)</th>
<th>Percent residuebc (temperature range, °C)</th>
<th>TGA derivative maximum, c °C</th>
<th>Theoretical residues, d,e percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(dtcPrBz)$_2$: 1</td>
<td>18.4</td>
<td>17.6 (260 to 440) 11.1 (440 to 1200)</td>
<td>343.3</td>
<td>20.0f 17.9g 11.6h</td>
</tr>
<tr>
<td>Ni(dtcEtnBu)$_2$: 2a</td>
<td>21.2</td>
<td>13.7 (280 to 410) 8.7 (410 to 1200)</td>
<td>377.0</td>
<td>24.7i 19.5j 14.3k</td>
</tr>
<tr>
<td>Ni(dtcPhBz)$_2$: 3</td>
<td>15.2</td>
<td>17.5 (260 to 430) 10.9 (430 to 1200)</td>
<td>341.1</td>
<td>17.6l 15.8m 10.2n</td>
</tr>
<tr>
<td>Ni(dtcBz)$_2$: 5</td>
<td>13i</td>
<td>12.6 (215 to 420) 10 (420 to 975)</td>
<td>350.2</td>
<td>15.0o 13.3p 9.7q</td>
</tr>
<tr>
<td>NiPPh$_3$(dtcPhBz)Cl: 6</td>
<td>22.0</td>
<td>21.8 (215 to 475) 16.9 (475 to 1000) 12.9 (1000 to 1200)</td>
<td>296.1 323.2</td>
<td>20.0r 16.5t 13.0u</td>
</tr>
</tbody>
</table>

aDetermined at NASA Glenn Research Center.
bDetermined at Wheeling Jesuit University (WJU).
cAverage of two measurements.
dTheoretical residue = (formula weight (FW) of NiS$_x$)/(molecular weight of compound).
eBold indicates best fit considering experiments done both at WJU and NASA for homoleptic compounds (1 to 3, and 6).
fNiS$_4$; FW = 101.45 g/mol.
gNiS; FW = 90.77 g/mol.
hNi; FW = 58.71 g/mol.
iEstimated from average of two runs at WJU.
jNi$_3$S$_4$; FW = 80.08 g/mol.
kNiS$_2$; FW = 122.82 g/mol.
Figure 8(a) shows a TGA plot for Ni(dtciPrBz)2 1. There are two well-defined mass losses at 204 and 343 °C. The small mass loss at 204 °C (2.1 percent) is unexplained, but not unprecedented (Refs. 5 and 63). It is followed by a large mass loss in the range of 260 to 440 °C (max. 343 °C) resulting in a residue at 437 °C of 17.6±0.5 percent, which corresponds closely to that calculated for NiS (17.9 percent). A gradual mass loss with increasing temperature continues, reaching a residue of 11.1±0.6 percent at 1200 °C, close to that calculated for Ni (11.6 percent). This result is in agreement with a simpler experiment at NASA GRC that resulted in a residue of 18.4 percent at 400 °C, within error for calculated mass of NiS and consistent with independent XRD analysis in a pyrolysis experiment; see below. Compound 1 had been included in an earlier study by Kameniček and Duffy (Ref. 63). The reported thermal decomposition of the complex begins at 80 °C and exhibits a plateau in the interval 410 to 460 °C (mass loss 73.7 percent; NiS2: calculated 73.8 percent; Ni(SCN)2: calculated 63.5 percent); decomposition was not complete until 1000 °C (Ref. 63). These results are not directly comparable since this experiment was carried out in air; also, there was no independent identification of the phases produced. The similar Ni(dtciBuBz)2 was reported recently along with its TGA (Ref. 64). Decomposition starts at 237 °C and is
Figure 8.—Concluded. Thermogravimetric analyses (with first derivatives) for synthesized dithiocarbamates.
(c) Ni(S$_2$CN(phenyl)(benzyl))$_2$. (d) Ni(S$_2$CN(benzyl))$_2$. (e) Ni(P(phenyl)$_3$)(S$_2$CN(phenyl)(benzyl))Cl.
accompanied by three small exotherms. The exotherm at 508 °C was also found to be consistent with proposed formation of NiS2 (or possibly Ni(SCN)2), followed by oxidation to likely produce NiO which is thermally stable to 1050 °C. Again, these results were not carried out under inert atmosphere and were not independently verified by XRD on the pyrolysate or other method(s). In both of these earlier studies, it is likely that initial production of sulfides (or thiocyanates) is followed by oxidation; see results and discussion below.

It is instructive to consider the work of Cavalheiro and co-workers on the TGA and DSC of Ni(S2CN(CH2)4)2 and Ni(S2CN(CH2)5)2 in air and in N2; results were quite different for the two ambient gases (Ref. 78). Thermolysis under N2 of Ni(S2CN(CH2)4)2 produced results consistent with the proposed path: Ni(S2CN(CH2)4)2 → Ni(SCN)2 (284 to 374 °C) → NiS (374 to 405 °C) → Ni (405 to 690 °C), while the end product was primarily NiO in air. For Ni(S2CN(CH2)5)2, the proposed path was Ni(S2CN(CH2)3)2·H2O → Ni(pipdtc)2 (173 to 245 °C) → NiS (272 to 600 °C) → Ni + Ni3S2 (600 to 743 °C); in air, NiO was produced (Ref. 78).

Figure 8(b) shows a TGA plot for Ni(dtcEtnBu)2. It shows two unexplained (but reproducible) mass losses at 108 °C (0.55 percent) and 258 °C (1.7 percent), followed by a sharp mass loss in the range of 280 to 400 °C (max. 377 °C) reaching a residue of 13.7±0.7 percent, which corresponds closely to that calculated for Ni (14.3 percent). An unexplained mass loss continues to an 8.7 percent residue at 1200 °C.

The volatility of some nickel(II) dithiocarbamates has been reported for more than a century and has been discussed in literature reviews (Refs. 74 and 75). Riekola and Makitie reported that the TGA of Ni(dtcBU2)2 exhibited a single peak at 390 °C with a mass loss of 93 percent (Ref. 79). In an earlier study which included the TGA of Ni(dtcBU2)2, Singhal et al. noted significant volatility of the complex, yielding a residue of 6.79 percent, in contrast to Ni(dtcHnBu)2 which yielded NiS, confirmed by XRD (Ref. 15).

Previously, O’Brien and coworkers reported that Ni(dtcEt2)2 and Ni(dtcMeEt)2 underwent mass loss in the range of 300 to 375 °C leaving a 10 percent mass residue (Ref. 17); reduction to elemental Ni would have yielded a residue of 16.5 and 17.9 percent, respectively. Thermolysis of Ni(dtcMe"Bu)2 and Ni(dtcMe"Cy)2 resulted in mass loss in two stages, approximately 6.5 percent at around 200 °C and rapid mass loss once again from 300 to 375 °C leaving an approximate 10 percent residue; the expected residue of Ni would have yielded 15.3 and 13.4 percent mass remaining, respectively. For each compound, XRD analysis of thin films deposited by low-pressure chemical vapor deposition, exploiting the volatility of these compounds, identified the presence of hexagonal (NiS1.03 or α-) NiS, sometimes combined with rhombohedral millerite (β-NiS) (Ref. 17); see discussion below.

Figure 8(c) shows that the TGA of Ni(dtcPhBz)2 (3) exhibits a single, well-defined mass loss in the range of 260 to 430 °C (341 °C max.), losing 82.5±0.1 percent of its mass. The residue, 17.5 percent, is intermediate between the formula NiS (15.8 percent) and NiS2 (21.3 percent) and quite close to that for Ni1S4 (17.6 percent). At 1200 °C, the residue is 10.9±0.3 percent, quite close to that calculated for Ni (10.2 percent). The mass loss for the related symmetrical compound 5 (Ni(dtcBz2)2) begins at 215 °C and results in a 11.5 percent mass loss by 280 °C, see Figure 8(d). A rapid onset of decomposition peaks at 350 °C, resulting in a net loss of ~87 percent mass. As seen in Table IX, this is greater mass loss than predicted for NiS, this was not observed in the unsymmetrical compounds (1 to 3). Both the more complex and greater than anticipated weight loss could be related to the symmetrical substitution. This is consistent with prior literature (Refs. 5, 17, 38, 74, 75, and 79).
Figure 8(e) shows TGA of NiCl(dtcPhBz)(PPh₃)₆, which exhibits a small mass loss (1.5±0.4 percent) between 160 and 200 °C. Upon further heating, the complex loses additional mass in two well-defined temperature ranges of 217 to 306 °C (295 °C max.) and 306 to 475 °C (324 °C max.), yielding residues of 61.4±2.7 percent and 21.8±0.5 percent. It is difficult to interpret these results due to the similarity of the mass of chemical species that are potentially lost. For example, loss of PPh₃ or Cl─CSN(PhBz) results in a loss of ~262 daltons (43 percent); a residue of ~22 percent could be accommodated by a variety of Ni-containing materials.

Kameniček et al. reported the preparation and properties of the series NiX(dtc"BuBz)PPh₃ (where X = Cl, Br, I and NCS) (Ref. 80). Thermolysis results indicate decomposition beginning at a slightly higher temperature range of 171 to 204 °C, apparently correlated with mass, with multiple exotherms in the range of 181 to 508 °C. Finally, thermolysis was reported of two structurally related heteroleptic series, NiX(dtcHPh)PPh₃ and NiX(dtcHBz)PPh₃ (where X = Cl, Br, I, and NCS) (Ref. 65). All began to decompose at lower temperatures (45 to 135 °C); again the processes were complicated with no obvious stable intermediates. This trend was noted by Singhal for nickel (di)butyl dithiocarbamates (Ref. 18) and Duffy et al. for tris-dithiocarbamates of In(III) and Ga(III) (Ref. 81): decomposition occurs at lower temperatures for complexes derived from primary versus secondary amines. Given the complicated decomposition of heteroleptic compounds, we did not pursue further studies of compound 6 and focused on the five homoleptic compounds as precursors to nickel sulfides.

As outlined in the experimental section, our preliminary TGA results are fairly consistent with formation of 1:1 NiS phases for complexes 1 to 3 and 5, as mass residues are within ~7 percent of pyrolysis mass predicted for NiS. This can be contrasted with the heteroleptic complex (6) where a 33 percent differential is clearly inconsistent with production of a 1:1 phase. The relatively high conversions of these unsymmetrically substituted complexes, even 2a, which is an isomer of bis(diisopropyldithiocarbamato)nickel(II), may result from their greater surface areas and packing efficiencies (Fig. 7). We discuss our more in-depth pyrolysis and solid-state materials studies of the thermolysis of five homoleptic nickel dithiocarbamates in the following section; a compilation of information regarding relevant nickel sulfide (and related) phases (Ref. 33) is included (Table X) to facilitate the follow-on discussions.

<table>
<thead>
<tr>
<th>Common name(s)</th>
<th>Stoichiometry</th>
<th>Structural type</th>
<th>Crystalline symmetry</th>
<th>JCPDF/ICDD reference numbers</th>
<th>Maximum thermal stability, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millerite β-NiS (LT)</td>
<td>NiS NiS</td>
<td>NiS</td>
<td>Rhombohedral R3m (160)</td>
<td>12-0041 75-0612 86-2280</td>
<td>380</td>
</tr>
<tr>
<td>α-NiS (HT) NiS₁₁₀</td>
<td>NiS NiAs</td>
<td>Hexagonal P6₃/mmc (194)</td>
<td>02-1273 75-0613</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Heazlewoodite Ni₅S₂ Ni₅S₂</td>
<td>Ni₅S₂</td>
<td>Ni₅S₂</td>
<td>Rhombohedral R32 (155)</td>
<td>44-1418 73-0698</td>
<td>530</td>
</tr>
<tr>
<td>Godlevskite NioS₈ NioS₈</td>
<td>NioS₈</td>
<td>NioS₈</td>
<td>Orthorhombic C222 (21)</td>
<td>22-1193 78-1886</td>
<td>400</td>
</tr>
<tr>
<td>Polydymite Ni₃S₄ Fe₃O₄ (Spinel)</td>
<td>Ni₃S₄</td>
<td>Cubic Fd3m (227)</td>
<td>43-1469 76-1813</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Vaesite NiS₂ FeS₂ (Pyrite)</td>
<td>NiS₂</td>
<td>Cubic Pc21 (205)</td>
<td>11-0099</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>Nickel sulfate NiSO₄</td>
<td>NiSO₄</td>
<td>Orthorhombic Cmcm (63)</td>
<td>13-0435</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Bunsenite NiO</td>
<td>NiO</td>
<td>Cubic Fm3m (225)</td>
<td>47-1049</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

See text discussions and references for more in-depth information. Maximum thermal stability comes from Reference 33.
Pyrolysis and Solids Analysis

Compounds 1 to 5 were packed into alumina (Al2O3) boats and heated in a tube furnace with flowing nitrogen or forming gas (4 percent H2 in Ar) at a rate of 150 cm3/min (or sccm) at 300 to 450 °C for 1 h. Table XI summarizes the experimental conditions, thermolysis results and materials (pyrolysate) characterization. Phase analysis was performed either through use of JADE XRD analysis software (Materials Data, Inc., Livermore, CA) or manually.

TABLE XI.—X-RAY (POWDER) ANALYSIS OF NICKEL DITHIOCARBAMATE PYROLYSATE PHASE AND CRYSTALLITE SIZES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Details</th>
<th>Manually indexed phase(s)(^a)</th>
<th>Lattice type(s)(^b)</th>
<th>JADE(^e) or manual(^d) quantitative phase analysis</th>
<th>Crystallite size and method used,(^{a,e}) nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(PrBzdtc): 1</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (100%)(^f)</td>
<td>36,(^d) 200(^f)</td>
</tr>
<tr>
<td>Ni(PrBzdtc): 1</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (85%)(^f)</td>
<td>33,(^d) 125(^f)</td>
</tr>
<tr>
<td>Ni(Et'Bzdtc): 2</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (55%)(^f)</td>
<td>32,(^d) 143(^f)</td>
</tr>
<tr>
<td>Ni(Et'Bzdtc): 3</td>
<td>400 °C (N2)</td>
<td>NiO</td>
<td>Cubic</td>
<td>NiO (15%)(^f)</td>
<td>18,(^d) 125(^f)</td>
</tr>
<tr>
<td>Ni(PhBzdtc): 3</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (45%)(^f)</td>
<td>37,(^d) 143(^f)</td>
</tr>
<tr>
<td>Ni(PhBzdtc): 3</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (85%)(^f)</td>
<td>18(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 4</td>
<td>350 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (85%)(^f)</td>
<td>28(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 4</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (95%)(^f)</td>
<td>19(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 4</td>
<td>450 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (40%)(^f)</td>
<td>24(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 5</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (100%)(^f)</td>
<td>27(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 5</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (79%)(^f)</td>
<td>34(^d)</td>
</tr>
<tr>
<td>Ni(Etscdc): 5</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (21%)(^f)</td>
<td>26(^d)</td>
</tr>
<tr>
<td>Ni(Bzdsc): 5</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (87%)(^f)</td>
<td>21(^d)</td>
</tr>
<tr>
<td>Ni(Bzdsc): 5</td>
<td>400 °C (N2)</td>
<td>NiS1.03</td>
<td>Hexagonal</td>
<td>NiS1.03 (13%)(^f)</td>
<td>31(^d)</td>
</tr>
</tbody>
</table>

\(^a\)Manually indexed using the following ICDD files: 02-1273 (NiS1.03 ≈ α-NiS); 12-0041 (β-NiS or Millerite); 44-1418 (Ni3S2, Heazlewoodite); 47-1049 (NiO or Bunsenite); 78-1886 (Ni3S or Godlevskite).

\(^b\)See discussion in text and Table X for crystal structural symmetry types.

\(^c\)Phase determination and quantitative analysis using JADE software (Materials Data, Inc., Livermore, CA http://www.materialsdata.com/index.html) with the following (newer) ICDD files: 13-0435 (orthorhombic-NiSO4); 47-1049 (NiO or Bunsenite), 73-0698 (Ni3S2, Heazlewoodite); 75-0613 (α-NiS); 78-1886 (Ni3S or Godlevskite); or 86-2280 (β-NiS or Millerite).

\(^d\)Scherrer equation, see text.

\(^e\)Brunauer, Emmett, and Teller (BET) analysis, see text.
Processing and Analysis Methods

The pyrolysis temperature was chosen based upon data from TGA experiments and the literature (Refs. 14 to 17) showing significant weight loss and essentially complete decomposition at temperatures below 400 °C (Table IX). Flowing nitrogen (forming gas) provides an inert (or a reducing) atmosphere and should preclude interaction with oxygen.

Scanning electron microscopy clearly demonstrates production of nanocrystals from microcrystalline dithiocarbamates; Figure 9 for compound 1 is typical of the morphology of precursors and pyrolysates. We attempted use of energy dispersive spectroscopy (EDAX Falcon model) to measure stoichiometry of pyrolysates. However, evolved gases were likely adsorbed onto the highly porous surface resulting in high concentrations of volatile elements (especially carbon and sulfur) relative to nickel.

![Figure 9.—Scanning electron micrographs before and after pyrolysis of Ni(S₂CN(isopropyl)(benzyl))₂ 1, under conditions described in Tables IX and X. (a) Before. (b) After.](image)
Powder XRD of pyrolysates produced during three different pyrolysis experiments allowed for identification of major phases of (nano)crystalline materials as shown in Figures 10 to 12. Decomposition products of three different unsymmetrically substituted dithiocarbamates (1 to 3) under flowing nitrogen at 400 °C was compared (Fig. 10). Products of the decomposition of both symmetrically substituted dithiocarbamates (4 and 5) under flowing nitrogen were compared at 325 to 450 °C (Fig. 11). Changes in decomposition products (nickel sulfide phases) of the diethyldithiocarbamate (4) under flowing forming gas (4 percent H₂ in Ar) are observed at 300 to 450 °C (Fig. 12).

Figure 10.—X-ray powder diffractograms of pyrolysates of synthesized unsymmetric dithiocarbamates produced under nitrogen as described in Table XI. (a) Ni(S₂CN(isopropyl)(benzyl))₂ 1. (b) Ni(S₂CN(ethyl)(n-butyl))₂ 2, without oxygen. (c) Compound 2, with oxygen. (d) Ni(PhBzdtc)₂ 3.
Figure 11.—X-ray powder diffractograms of the pyrolysates of synthesized symmetric dithiocarbamates produced under nitrogen as described in Table X. (a) Ni(S$_2$CN(benzyl)$_2$)$_2$, at 325 °C. (b) Compound 5, at 350 °C. (c) Ni(S$_2$CN(ethyl)$_2$)$_2$, at 350 °C. (d) Compound 4, at 400 °C. (e) Compound 4, at 400 °C. (f) Compound 4, at 450 °C.
Figure 12.—X-ray powder diffractograms of the pyrolysate of Ni(S$_2$CN(ethyl)$_2$)$_2$ 4, under flowing forming gas (4 percent hydrogen in argon) as described in Table XI. (a) 300 °C, (b) 325 °C, (c) 350 °C, (d) 400 °C, and (e) 450 °C.
Phase Analyses

Manual phase identity was accomplished by comparison to JCPDF or ICDD card data. A reference-intensity-ratio method of semiquantitative XRD analysis was used to estimate the composition of the multiphase samples based upon relative intensities of the most intense peaks compared to intensities published in the ICDD standards (Ref. 82). This method should be considered as only semiquantitative (Ref. 83).

In the first experiment (Fig. 10), two separate thermolyses were done for dithiocarbamate complex 1 to 3 to ensure that temperature variations were averaged out, sufficient pyrolysate was produced to analyze, and to guard against potential oxygen contamination. In fact, trial one of compound 2 resulted in a failure to completely exclude oxygen and production of cubic NiO (ICDD 47-1049). A comparison of weight loss in Tables IX and XI shows good agreement for compounds 1 and 3 but that excess weight remained for decomposition of compound 2 after 1 h; production of NiO likely accounts for poor agreement between pyrolysis and TGA experiments.

The low-temperature (rhombohedral) phase of (β-)nickel sulfide (millerite) converts to the hexagonal or α-NiS (NiS1.03) phase at 379 °C (Ref. 31). In our thermolysis experiments, the hexagonal phase predominated, although there was significant millerite found when compound 3 was used as a precursor. While there was no correlation of product mix with maximum weight loss in TGA, there may be some impact of the precursor molecular weight; the all-aromatic compound 3 produced an approximate 50/50 mix of millerite and α-NiS (see further discussion below). However, there is enough error in the temperature sensor and variation in the thermolysis conditions to equivocate on this conclusion. The adventitious oxidation in trial one of compound 2 resulted in conversion of only the rhombohedral or lower temperature stable-millerite to NiO.

The second experiment (Fig. 11), also under nitrogen, examined decomposition of the symmetrically substituted compounds (4 and 5) as a function of temperature. Rhombohedral millerite (β-NiS) was the dominant phase only at 325 °C for decomposition of 5. By 350 °C, decomposition of both diethyl (4) and dibenzyl (5) compounds produced the hexagonal phase at ~85 percent abundance. At 400 °C, both compounds produced the hexagonal phase exclusively. Decomposition at a higher temperature (450 °C) under an oxygen-containing atmosphere produced the hexagonal phase, NiO (as observed for 2 above), and also NiSO₄, see Table XI.

Finally, decomposition of 4 under forming gas from 300 to 450 °C produced almost single-phase millerite (300 °C), nearly pure orthorhombic godlevskite (Ni₉S₈) at 325 and 350 °C, and single-phase rhombohedral heazlewoodite (Ni₃S₂) at temperatures of 400 and 450 °C. The presence of hydrogen in the atmosphere facilitates loss of sulfur (presumably as H₂S), producing nickel-rich phases, see Figure 12 and Table XI.

Crystallite and Particle Size Analyses

An estimate of the minimum crystallite size (diameter, \(D\)) was determined by use of the Scherrer formula (Eq. (1)). The constant (\(K\)) is a shape factor and typically ranges from 0.87 to 1 (we used the average value (0.94)); \(\lambda\) is the X-ray wavelength (Cu K\(_\alpha\) = 1.5418 Å); \(\beta\) is the full-width half-maximum of a peak in radians; and \(\theta\) is the Bragg angle of the peak (Ref. 84).

\[
D = \frac{K \cdot \lambda}{\beta \cdot \cos \theta}
\]

(1)

Each estimated minimum crystallite size is the mean of 3 to 5 of the most intense unambiguous peaks for each phase. Scherrer’s formula often underestimates crystallite size; there can be a significant contribution to \(\beta\) from instrumental effects (Ref. 76). Thus, our results should be viewed as representing minimum size.

An alternative method utilizing the surface area (SA) measured by the Brunauer, Emmett, and Teller (BET) gaseous method employs Equation (2) (Ref. 85), commonly expressed as

\[
D_{\text{BET}} = \frac{6000}{p \cdot SA}
\]

(2)
\(\rho \) is the theoretical density (for nickel sulfides, \(\rho = 6 \text{ g/cm}^3 \)), and \(S_A \) is in units of g/cm\(^2\). The number produced by this equation is in units of nm; see Table XI. Finally, transmission electron microscopy (TEM) can be utilized to directly examine the particle sizes and distributions, see Figures 13 and 14, respectively, for typical results.

Figure 13.—Transmission electron micrographs of synthesized dithiocarbamate samples after pyrolysis for 1 h under nitrogen showing clumps of smaller crystallites combining to form larger agglomerates and, under higher magnification, planes of individual crystallites.
(a) Ni(S:CN(ethyl)(n-butyl))\(_2\), at 400 °C. (b) Compound 2 (400 °C) at higher magnification.
(c) Ni(S\(_2\):CN(ethyl))\(_2\), at 400 °C. (d) Compound 4 (400 °C) at higher magnification.
(e) Compound 4, at 450 °C. (f) Compound 4 (450 °C) at higher magnification.
Clearly, as seen in Figure 13, the larger particles are aggregates of crystallites that seem to range in size from ~20 to 50 nm. Given the nature of the samples being examined, it is more likely that BET surface area measurements are describing particles or crystallite agglomerates. We can estimate that a 125 nm particle can contain up to 200 crystallites of an average size of 30 nm. It is clear from the TEM results that there is a range of sizes or distribution produced for not only the particles (agglomerates) but also the crystallites. A more in-depth treatment and analysis of particle sizes is beyond the scope of this study.

Discussion

Table XII is a compilation of results from our work and earlier studies (Refs. 14 to 17, 19, and 21 to 23). Wold et al. decomposed nickel bis(diethyldithiocarbamate) under flowing H2S at 200 °C and completed the experiment at 500 °C producing Ni3S2 (Ref. 14). We had the same result using the same compound (4) under forming gas. Singhal et al. decomposed homoleptic bis-butyl- and bis-dibutyl-nickel dithiocarbamates by TGA (under 7 percent H2/N2 or N2) and heated stage-XRD under 7 percent H2/N2 up to 500 °C to produce millerite (rhombohedral or β-NiS – ICDD 12-0041) and a poorly characterized
<table>
<thead>
<tr>
<th>Precursor compound</th>
<th>Decomposition conditions<sup>a,b</sup></th>
<th>Temperature, °C</th>
<th>Phase(s) produced<sup>d</sup></th>
<th>Appearance or morphology<sup>e</sup></th>
<th>Text reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub></td>
<td>Pyrolysis at 200 °C under H<sub>2</sub>S, then at 525 °C under H<sub>2</sub>/H<sub>2</sub>S (125:1)</td>
<td>200; 525</td>
<td>Ni<sub>3</sub>S<sub>2</sub></td>
<td>------------------</td>
<td>14</td>
</tr>
<tr>
<td>Ni('Bu(H)dtc)<sub>2</sub></td>
<td>Heated stage XRD (7% H<sub>2</sub>/N<sub>2</sub>)</td>
<td>100 to 200</td>
<td>NiS*</td>
<td>------------------</td>
<td>15</td>
</tr>
<tr>
<td>Ni('Bu(H)dtc)<sub>2</sub></td>
<td>Heated stage XRD (7% H<sub>2</sub>/N<sub>2</sub>)</td>
<td>250 to 300</td>
<td>β-NiS</td>
<td>------------------</td>
<td>15</td>
</tr>
<tr>
<td>Ni('Bu(H)dtc)<sub>2</sub></td>
<td>Heated stage XRD (7% H<sub>2</sub>/N<sub>2</sub>)</td>
<td>350 to 450</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>------------------</td>
<td>15</td>
</tr>
<tr>
<td>Ni('Bu(H)dtc)<sub>2</sub></td>
<td>Heated stage XRD N<sub>2</sub></td>
<td>350</td>
<td>NiS* + β-NiS</td>
<td>------------------</td>
<td>15</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub> 4</td>
<td>Pyrolysis under 150 sccm (4% H<sub>2</sub>/Ar)</td>
<td>300</td>
<td>β-NiS</td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub> 4</td>
<td>Pyrolysis under 150 sccm (4% H<sub>2</sub>/Ar)</td>
<td>325 and 350</td>
<td>Ni<sub>3</sub>S<sub>8</sub></td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub> 4</td>
<td>Pyrolysis under 150 sccm (4% H<sub>2</sub>/Ar)</td>
<td>400 and 450</td>
<td>Ni<sub>3</sub>S<sub>2</sub></td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub></td>
<td>CVD: 120 Pa N<sub>2</sub> on Si(111)</td>
<td>Source: 250</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub></td>
<td>Needles and leaves</td>
<td>16</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub></td>
<td>CVD: 1.5 Pa N<sub>2</sub> on glass</td>
<td>Source: 200 to 250</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub> + β-NiS (minor)</td>
<td>Needle, nanowires and platelets</td>
<td>17</td>
</tr>
<tr>
<td>Ni(Me<sub>E</sub>dtc)<sub>2</sub></td>
<td>CVD: 1.5 Pa N<sub>2</sub> on glass</td>
<td>Source: 250</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub></td>
<td>Needles and platelet clumps</td>
<td>17</td>
</tr>
<tr>
<td>Ni(Me<sub>E</sub>dtc)<sub>2</sub></td>
<td>CVD: 1.5 Pa N<sub>2</sub> on glass</td>
<td>Source: 275</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub></td>
<td>Nanowires and clumps</td>
<td>17</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub>, Ni(Me<sub>E</sub>dtc)<sub>2</sub>, Ni(Me<sub>Hex</sub>dtc)<sub>2</sub></td>
<td>Spray: 140 sccm Ar on glass</td>
<td>Source: 25</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>Tangles of wires</td>
<td>19</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub>, Ni(Me<sub>E</sub>dtc)<sub>2</sub>, Ni(Me<sub>Hex</sub>dtc)<sub>2</sub></td>
<td>Spray: 140 sccm Ar on glass</td>
<td>Source: 25</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>Tangles of wires</td>
<td>19</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub>, Ni(Me<sub>E</sub>dtc)<sub>2</sub>, Ni(Me<sub>Hex</sub>dtc)<sub>2</sub></td>
<td>Spray: 140 sccm Ar on glass</td>
<td>Source: 25</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>Tangles of wires</td>
<td>19</td>
</tr>
<tr>
<td>Ni(Me<sub>B</sub>bdtc)<sub>2</sub></td>
<td>Spray: 140 sccm Ar on glass</td>
<td>Source: 25</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>Tangles of wires</td>
<td>19</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub>, Ni(Me<sub>E</sub>dtc)<sub>2</sub>, Ni(Me<sub>Hex</sub>dtc)<sub>2</sub></td>
<td>Spray: 140 sccm Ar on glass</td>
<td>Source: 25</td>
<td>Ni<sub>3</sub>S<sub>2</sub> + Ni<sub>7</sub>S<sub>6</sub></td>
<td>Tangles of wires</td>
<td>19</td>
</tr>
<tr>
<td>Ni(Bz<sub>2</sub>dtc)<sub>2</sub></td>
<td>Pyrolysis under 150 sccm N<sub>2</sub></td>
<td>325</td>
<td>β-NiS (major) + Ni<sub>3</sub>S<sub>1.03</sub></td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(Et<sub>2</sub>dtc)<sub>2</sub>, Ni(Bz<sub>2</sub>dtc)<sub>2</sub></td>
<td>Pyrolysis under 150 sccm N<sub>2</sub></td>
<td>350</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub> (major) + β-NiS</td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(Bz<sub>Pr</sub>dtc)<sub>2</sub>, 1, 4, and 5</td>
<td>Pyrolysis under 150 sccm N<sub>2</sub></td>
<td>400</td>
<td>Ni<sub>3</sub>S<sub>1.03</sub></td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
</tbody>
</table>

^aReference 14

^bReference 15

^cReference 16

^dReference 17

^eReference 19
related phase (ICDD 02-1280) and several nickel-rich phases (Ni$_3$S$_2$ and Ni$_7$S$_6$) through loss of H$_2$S (Ref. 15). Nomura and Hyata studied the deposition of hexagonal phase (α-NiS or NiS$_{1.03}$ – ICDD 02-1273) films using the same compound Ni(S$_2$CN(C_2H$_5$)$_2$)$_2$ on Si(111) substrates at 350 to 400 ºC by low pressure chemical vapor deposition (CVD) (Ref. 16).

O’Brien and coworkers reported synthesis and characterization of homoleptic symmetrically and unsymmetrically substituted nickel(II) dithiocarbamates (Ref. 19) and use of nickel dithiocarbamates as precursors for several different nickel sulfides (Ni$_{1.03}$, β-NiS, Ni$_3$S$_4$, and α-Ni$_7$S$_6$) (Refs. 17 and 19). Using a CVD process at a lower pressure of carrier gas (1.5 Pa N$_2$) resulted primarily in the production of the hexagonal α-NiS or NiS$_{1.03}$ phase (Ref. 17). This agrees with our own results using both symmetrically and unsymmetrically substituted nickel dithiocarbamates and Nomura (Ref. 16). Spray pyrolysis of three different alkyl nickel dithiocarbamates (RR’ = Et$_2$, MeEt, or MenHex) on glass substrates using an Ar carrier gas produced a mixture of Ni$_3$S$_4$ and NiS$_2$ at 400 ºC, mostly NiS$_{1.03}$, Ni$_3$S$_4$ and NiS$_2$ at 425 ºC and hexagonal NiS$_{1.03}$ at 450 ºC (Ref. 19). Using Ni(dtcMe$^\prime$Bu)$_2$ as a precursor produced a mixture of Ni$_3$S$_6$ and NiS$_2$ at 400 and 425 ºC; NiS$_2$ was produced at 450 ºC (Ref. 19).

Recently, two groups have utilized nickel dithiocarbamates as single-source precursors under inert atmospheres under solvothermal reaction conditions. Hogarth et al. published a very interesting, in-depth and well-designed mechanistic study of the decomposition of nickel dithiocarbamates under a variety of solvothermal reaction conditions (Ref. 21). When symmetrically substituted Ni(dtc$^\text{Bu}_2$)$_2$ was heated in liquid amine at 120 ºC, mainly hexagonal α-NiS and some Ni$_3$S$_4$ were produced; at 150 ºC, the product was hexagonal α-NiS (Ref. 21). Unsymmetrically substituted Ni(dtc$^\text{Hex(H)}$)$_2$ heated in dodecane at 120 ºC produced Ni$_3$S$_4$ (Ref. 21). Prakasam and colleagues from Finland studied the decomposition of an unsymmetrically substituted complex related to compound 1 (Ni(dtc$^\text{BuBz})_2$) at 160 ºC in EtOH/CHCl$_3$ (5:1) and noted the production of nanoclumps of primarily vaesite (NiS$_2$) with a minority fraction of millerite (β-NiS) (Ref. 22). The same group conducted a related study in the same mixed solvent using Ni(CS$_2$NC$_2$NC(H)Ph)$_2$: a 4-(diphenyl-methyl)piperazincarbodithioato complex, at 400 ºC and produced a 70/30 mixture of NiS$_2$ and Ni$_3$S$_4$ (Ref. 23).

<table>
<thead>
<tr>
<th>Precursor compound</th>
<th>Decomposition conditionsa,b</th>
<th>Temperature,c ºC</th>
<th>Phase(s) producedd</th>
<th>Appearance or morphologye</th>
<th>Text reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(nBuEtdtc)$_2$:2</td>
<td>Pyrolysis under 150 sccm N$_2$</td>
<td>400</td>
<td>NiS$_{1.03}$ (major) + β-NiS</td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(BzPhdtc)$_2$:3</td>
<td>Pyrolysis under 150 sccm N$_2$</td>
<td>400</td>
<td>β-NiS (major) + NiS$_{1.03}$</td>
<td>Clumps of nanoparticles</td>
<td>This work</td>
</tr>
<tr>
<td>Ni(nBu$_2$dtc)$_2$</td>
<td>Solvothermal pyrolysis (N$_2$) in n-hexylamine</td>
<td>120</td>
<td>α-NiS (major) + NiS$_4$</td>
<td>Clumps of nanospheres</td>
<td>21</td>
</tr>
<tr>
<td>Ni(nBu$_2$dtc)$_2$</td>
<td>Solvothermal pyrolysis (N$_2$) in oleylamine</td>
<td>150</td>
<td>α-NiS</td>
<td>Clumps of nanospheres</td>
<td>21</td>
</tr>
<tr>
<td>Ni(nHex(H)dtc)$_2$</td>
<td>Solvothermal pyrolysis (N$_2$) in dodecane</td>
<td>120</td>
<td>NiS$_4$</td>
<td>Clumps of nanospheres</td>
<td>21</td>
</tr>
<tr>
<td>Ni(BznBudtc)$_2$</td>
<td>Solvothermal pyrolysis (N$_2$) in EtOH/CHCl$_3$ (5:1)</td>
<td>160</td>
<td>NiS$_2$ (major) + β-NiS</td>
<td>Clumps of nanospheres</td>
<td>22</td>
</tr>
<tr>
<td>Ni(CS$_2$NC$_4$NC(H)Ph$_2$)$_2$</td>
<td>Solvothermal pyrolysis (N$_2$) in EtOH/CHCl$_3$ (5:1)</td>
<td>400</td>
<td>NiS$_2$:Ni$_3$S$_4$ (70:30)</td>
<td>Clumps of nanospheres</td>
<td>23</td>
</tr>
</tbody>
</table>

aAtmosphere for decomposition is under either inert (N$_2$ or Ar) or reducing (4% H$_2$/Ar, 7% H$_2$/N$_2$, or H$_2$/H$_2$S) conditions.

bXRD is X-ray diffraction and CVD is chemical vapor deposition.

cSee individual references for more detailed experimental descriptions.

dNiS* is a poorly defined phase, other phases are further described in text references.
Every precursor compound decomposed in this study or reported in the literature begins with a core NiS₄ stoichiometry. However, as discussed above, the initial decomposition pathways may be influenced by precursor structure. As demonstrated quite convincingly by the Exxon Research group (Ref. 15) for simple thermolysis, Hogarth (Ref. 21) for solvothermal decomposition, and O’Brien (Ref. 86) for thin film deposition by CVD or spray pyrolysis, reaction conditions are much more important for determining sulfide phase(s) produced.

The main insight derived from analyzing phase production under a variety of conditions from this work and previous studies (Refs. 14 to 17, 19, and 21 to 23) is that three general growth or deposition patterns emerge. For powder thermolysis or CVD from a heated source under nitrogen, the products are determined primarily by thermodynamic considerations (this work and Refs. 15 to 17) of the sulfide product regardless of precursor structure, unsymmetrical, symmetrical, mono- or bis-dithiocarbamate (Table XI). Flowing inert gas transports sulfur-containing byproducts and 1:1 molar ratio phases (α-NiS and β-NiS) are produced; as expected the hexagonal phase predominates at temperatures over 380 °C (Ref. 33), see Table X. Use of forming gas (or H₂S) produces nickel-rich sulfide phases through enhanced loss of sulfur, presumably as H₂S (this work and Refs. 14 and 15). Initially formed millerite (β-NiS) decomposes to form godlevskite (Ni₅S₇); this slightly nickel-rich phase further reacts and produces heazlewoodite (Ni₃S₂), a phase stable at temperatures up to 530 °C (Ref. 33).

Spray pyrolysis (starting with an unheated precursor) (Ref. 19) or solvothermal reactions (Refs. 21 to 23) produce a complex mixture of nickel sulfides. Loss of sulfur occurs as solid-state phases are produced during film deposition; vaesite (NiS₂) is the most often formed phase at 400 or 425 °C; the hexagonal (α-)NiS phase is most prevalent at 450 °C. This can be rationalized by the stability of these two phases (Ref. 33) and the enhanced loss of sulfur expected at the higher deposition temperature (Ref. 86).

For solvothermal studies, sulfur partial pressures are expected to be higher, and the solvent or reaction medium will definitely play an important role in determining the nickel sulfide phases produced (Refs. 21 to 23). Decomposing Ni(dtc¹Hex(H))₂, a monosubstituted dithiocarbamate, in dodecane at 120 °C produces the thiospinel phase (Ni₅S₇). Use of a primary amine as the reaction medium resulted in decomposition of the symmetrically disubstituted Ni(dtc¹Bu₂)₂ to yield a mixed-phase (α-NiS (major) and Ni₅S₇) product at 120 °C that became pure α-NiS at 150 °C (Ref. 21). This is consistent with the greater known stability of the hexagonal 1:1 phase (Ref. 33).

Finally, two recent reports on decomposition of two different structural types of nickel dithiocarbamates in EtOH/CHCl₃ (5:1) produced NiS₂ as the major product with β-NiS and Ni₃S₄ as minor products at 160 °C (Ref. 22) and 400 °C (Ref. 23), respectively. The main observation to be made from the two studies from Finland is that vaesite is the predominant (and most stable (Ref. 33)) sulfur-rich product. Clearly, the use of solvothermal reaction conditions warrants further study as this approach offers opportunities for enhanced control of phase and morphology.

Conclusions

A slightly distorted square-planar nickel coordination environment is observed for all four unsymmetrically substituted nickel(II) dithiocarbamate complexes studied: Ni(S₂CN(isopropyl)(benzyl))₂; 1, Ni(S₂CN(ethyl)(n-butyl))₂; 2, Ni(S₂CN(phenyl)(benzyl))₂; 3, and Ni(P(phenyl)₃)(S₂CN(phenyl)(benzyl))Cl 6. Compound 1 exhibits the greatest asymmetry of the Ni–S bonds amongst the homoleptic compounds, and a trans-influence affects the Ni-S bond distances in compound 6.

Electronic absorption spectra include a weak d-d band(s), one strong metal-ligand charge transfer band, and three intense intra-ligand charge transfer bands, as observed previously. Solid-state infrared spectra in both the C–S and C–N regions are more complex because of the lower symmetry and presence (for complexes 1, 3, and 6) of aromatic spectral features but are essentially consistent with previous reports.
The organic residues adopt conformations (transoid and anti) to minimize steric interactions. Steric
effects also may determine the puckering of the nickel and nitrogen atoms, both being planar or nearly so.
The nitrogens essentially form double bonds to the CS$_2$ carbons. The other substituents on nitrogen in 1 to
3 adopt transoid conformations. There are no strong intermolecular interactions, consistent with previous
reports of the volatility of these compounds.

Thermogravimetric analyses are consistent with production of 1:1 NiS phases under inert
atmospheres or nickel-rich phases under reducing conditions, pointing to the utility of these complexes
for the fabrication of solid-state materials. The priority of processing conditions over precursor structure
in determining the nature of the pyrolysate has also been observed in earlier work by the authors on
deposition of CuME$_2$ materials (M = In, Ga; E = S, Se) and as noted above, by O’Brien and coworkers in
an elegant and rigorous study of nickel sulfide, selenide, and phosphide deposition from nickel
dichalcogenimidodiphosphinates Ni((isopropyl)P(E)NP(E')(isopropyl))$_2$ (E,E' = S and/or Se).
Appendix—Full Structural Data for Compounds 1, 2a, 3, and 6

Tables XIII to XVI contain a more extensive list of bond lengths and angles than found in Table IV. Deposition numbers for crystallographic information files (CIFs) deposited with the Cambridge Crystallographic Data Centre (CCDC) are given in Table II. If desired, CIFs can be requested from CCDC.

TABLE XIII—BOND LENGTHS AND ANGLES FOR Ni(S₂CNPrBz)₂

<table>
<thead>
<tr>
<th>Bond length, Å</th>
<th>Bond angle, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni–S(21)</td>
<td>2.1993(5)</td>
</tr>
<tr>
<td>Ni–S(12)</td>
<td>2.1999(5)</td>
</tr>
<tr>
<td>Ni–S(22)</td>
<td>2.2055(5)</td>
</tr>
<tr>
<td>Ni–S(11)</td>
<td>2.2111(5)</td>
</tr>
<tr>
<td>S(11)–C(10)</td>
<td>1.722(1)</td>
</tr>
<tr>
<td>S(12)–C(10)</td>
<td>1.722(1)</td>
</tr>
<tr>
<td>S(21)–C(20)</td>
<td>1.728(1)</td>
</tr>
<tr>
<td>S(22)–C(20)</td>
<td>1.722(1)</td>
</tr>
<tr>
<td>N(1)–C(10)</td>
<td>1.318(2)</td>
</tr>
<tr>
<td>N(1)–C(122)</td>
<td>1.319(2)</td>
</tr>
<tr>
<td>N(1)–C(122)</td>
<td>1.492(2)</td>
</tr>
<tr>
<td>N(1)–C(122)</td>
<td>1.492(2)</td>
</tr>
<tr>
<td>N(2)–C(210)</td>
<td>1.475(2)</td>
</tr>
<tr>
<td>N(2)–C(222)</td>
<td>1.492(2)</td>
</tr>
<tr>
<td>C(110)–C(111)</td>
<td>1.512(3)</td>
</tr>
<tr>
<td>C(111)–C(112)</td>
<td>1.526(3)</td>
</tr>
<tr>
<td>C(112)–C(123)</td>
<td>1.516(3)</td>
</tr>
<tr>
<td>C(210)–C(211)</td>
<td>1.515(3)</td>
</tr>
<tr>
<td>C(221)–C(222)</td>
<td>1.523(3)</td>
</tr>
<tr>
<td>C(222)–C(223)</td>
<td>1.517(3)</td>
</tr>
<tr>
<td>C(111)–C(116)</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>C(111)–C(112)</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>C(112)–C(113)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C(113)–C(114)</td>
<td>1.371(3)</td>
</tr>
<tr>
<td>C(114)–C(115)</td>
<td>1.373(3)</td>
</tr>
<tr>
<td>C(115)–C(116)</td>
<td>1.391(3)</td>
</tr>
<tr>
<td>C(211)–C(216)</td>
<td>1.393(3)</td>
</tr>
<tr>
<td>C(211)–C(212)</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C(212)–C(213)</td>
<td>1.393(3)</td>
</tr>
<tr>
<td>C(213)–C(214)</td>
<td>1.373(3)</td>
</tr>
<tr>
<td>C(214)–C(215)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(215)–C(216)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C(212)–C(211)</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C(222)–C(221)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(222)–C(221)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C(223)–C(222)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>Bond length, Å</td>
<td>Bond angle, deg</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Ni–S(1) 2.2072(6)</td>
<td>S(1)–Ni–S(1a) 180.00(2)</td>
</tr>
<tr>
<td>Ni–S(1a) 2.2073(6)</td>
<td>S(1)–Ni–S(2a) 100.72(2)</td>
</tr>
<tr>
<td>Ni–S(2) 2.2093(6)</td>
<td>S(1)–Ni–S(2) 79.28(2)</td>
</tr>
<tr>
<td>Ni–S(2a) 2.2094(6)</td>
<td>S(1a)–Ni–S(2a) 79.28(2)</td>
</tr>
<tr>
<td>S(1)–C(1) 1.723(3)</td>
<td>S(1a)–Ni–S(2) 100.72(2)</td>
</tr>
<tr>
<td>S(2)–C(1) 1.720(2)</td>
<td>S(2)–Ni–S(2a) 180.00(2)</td>
</tr>
<tr>
<td>C(1)–N(1) 1.321(3)</td>
<td>C(1)–S(1)–Ni 85.42(8)</td>
</tr>
<tr>
<td>N(1)–C(11) 1.470(3)</td>
<td>C(1)–S(2)–Ni 85.42(9)</td>
</tr>
<tr>
<td>N(1)–C(15) 1.472(3)</td>
<td>N(1)–C(1)–S(2) 125.0(1)</td>
</tr>
<tr>
<td>C(11)–C(12) 1.512(3)</td>
<td>N(1)–C(1)–S(1) 125.1(1)</td>
</tr>
<tr>
<td>C(12)–C(13) 1.526(3)</td>
<td>S(2)–C(1)–S(1) 109.9(1)</td>
</tr>
<tr>
<td>C(13)–C(14) 1.522(4)</td>
<td>C(1)–N(1)–C(11) 121.6(1)</td>
</tr>
<tr>
<td>C(15)–C(16) 1.523(4)</td>
<td>C(1)–N(1)–C(15) 121.3(2)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Bond length, Å</td>
<td>Bond angle, deg</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ni–S(1)</td>
<td>2.2005(5)</td>
</tr>
<tr>
<td>Ni–S(1a)</td>
<td>2.2005(5)</td>
</tr>
<tr>
<td>Ni–S(2)</td>
<td>2.2035(4)</td>
</tr>
<tr>
<td>Ni–S(2a)</td>
<td>2.2035(4)</td>
</tr>
<tr>
<td>S(1)–C(1)</td>
<td>1.721(1)</td>
</tr>
<tr>
<td>S(2)–C(1)</td>
<td>1.718(1)</td>
</tr>
<tr>
<td>N(1a)–C(1a)</td>
<td>1.318(2)</td>
</tr>
<tr>
<td>N(1)–C(11)</td>
<td>1.445(2)</td>
</tr>
<tr>
<td>N(1)–C(20)</td>
<td>1.475(2)</td>
</tr>
<tr>
<td>C(1)–N(1)</td>
<td>1.318(2)</td>
</tr>
<tr>
<td>C(11)–C(12)</td>
<td>1.380(2)</td>
</tr>
<tr>
<td>C(11)–C(16)</td>
<td>1.382(2)</td>
</tr>
<tr>
<td>C(12)–C(13)</td>
<td>1.377(2)</td>
</tr>
<tr>
<td>C(13)–C(14)</td>
<td>1.374(3)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.376(3)</td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>C(20)–C(21)</td>
<td>1.509(2)</td>
</tr>
<tr>
<td>C(21)–C(22)</td>
<td>1.373(3)</td>
</tr>
<tr>
<td>C(21)–C(26)</td>
<td>1.387(3)</td>
</tr>
<tr>
<td>C(22)–C(23)</td>
<td>1.392(3)</td>
</tr>
<tr>
<td>C(23)–C(24)</td>
<td>1.356(3)</td>
</tr>
<tr>
<td>C(24)–C(25)</td>
<td>1.370(3)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.385(3)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
TABLE XVI.—BOND LENGTHS AND ANGLES FOR Ni(PPh₃)(S₂CNPhBz)Cl

<table>
<thead>
<tr>
<th>Bond length, Å</th>
<th>Bond angle, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni–Cl</td>
<td>2.1800(8)</td>
</tr>
<tr>
<td>Ni–S(1)</td>
<td>2.1878(8)</td>
</tr>
<tr>
<td>Ni–P(2)</td>
<td>2.2010(8)</td>
</tr>
<tr>
<td>Ni–S(2)</td>
<td>2.2342(8)</td>
</tr>
<tr>
<td>S(1)–C(10)</td>
<td>1.722(3)</td>
</tr>
<tr>
<td>S(2)–C(10)</td>
<td>1.714(3)</td>
</tr>
<tr>
<td>P(2)–C(231)</td>
<td>1.823(3)</td>
</tr>
<tr>
<td>P(2)–C(221)</td>
<td>1.824(3)</td>
</tr>
<tr>
<td>P(2)–C(211)</td>
<td>1.835(3)</td>
</tr>
<tr>
<td>N(10)–C(10)</td>
<td>1.313(4)</td>
</tr>
<tr>
<td>N(10)–C(111)</td>
<td>1.456(4)</td>
</tr>
<tr>
<td>N(10)–C(120)</td>
<td>1.478(3)</td>
</tr>
<tr>
<td>C(111)–C(116)</td>
<td>1.364(4)</td>
</tr>
<tr>
<td>C(111)–C(112)</td>
<td>1.373(4)</td>
</tr>
<tr>
<td>C(112)–C(113)</td>
<td>1.383(4)</td>
</tr>
<tr>
<td>C(113)–C(114)</td>
<td>1.368(5)</td>
</tr>
<tr>
<td>C(114)–C(115)</td>
<td>1.374(4)</td>
</tr>
<tr>
<td>C(115)–C(116)</td>
<td>1.384(5)</td>
</tr>
<tr>
<td>C(120)–C(121)</td>
<td>1.510(4)</td>
</tr>
<tr>
<td>C(121)–C(126)</td>
<td>1.391(4)</td>
</tr>
<tr>
<td>C(121)–C(122)</td>
<td>1.389(4)</td>
</tr>
<tr>
<td>C(122)–C(123)</td>
<td>1.391(5)</td>
</tr>
<tr>
<td>C(123)–C(124)</td>
<td>1.382(6)</td>
</tr>
<tr>
<td>C(124)–C(125)</td>
<td>1.362(5)</td>
</tr>
<tr>
<td>C(125)–C(126)</td>
<td>1.382(4)</td>
</tr>
<tr>
<td>C(211)–C(216)</td>
<td>1.389(4)</td>
</tr>
<tr>
<td>C(211)–C(212)</td>
<td>1.385(4)</td>
</tr>
<tr>
<td>C(212)–C(213)</td>
<td>1.381(4)</td>
</tr>
<tr>
<td>C(213)–C(214)</td>
<td>1.391(4)</td>
</tr>
<tr>
<td>C(214)–C(215)</td>
<td>1.373(4)</td>
</tr>
<tr>
<td>C(215)–C(216)</td>
<td>1.391(4)</td>
</tr>
<tr>
<td>C(221)–C(226)</td>
<td>1.395(4)</td>
</tr>
<tr>
<td>C(223)–C(224)</td>
<td>1.386(4)</td>
</tr>
<tr>
<td>C(231)–C(236)</td>
<td>1.399(4)</td>
</tr>
<tr>
<td>C(233)–C(234)</td>
<td>1.378(4)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
References

55. Hogarth, Graime, et al.: Functionalised Dithiocarbamate Complexes: Synthesis and Molecular Structures of Bis(2-Methoxyethyl)Dithiocarbamate Complexes [M{S_{2}CN(CH_{2}CH_{2}OMe)_{2}}_{2}](M = Ni, Cu, Zn) and [Cu{S_{2}CN(CH_{2}CH_{2}OMe)_{2}}_{2}][ClO_{4}]. Inorg. Chim. Acta, vol. 362, no. 4, 2009, pp. 1361–1364.

