Assessing Spontaneous Combustion Instability with Recurrence Quantification Analysis

Chad J. Eberhart, Jacobs Technology, ESSSA Group, MSFC ER42
Mailstop ER42
Marshall Space Flight Center Alabama 35812
256-544-3175 256-544-2032 chad.j.eberhart@nasa.gov

Matthew J. Casiano, Jacobs Technology, ESSSA Group, MSFC ER42
Mailstop ER42
Marshall Space Flight Center Alabama 35812
256-544-6057 256-544-2032 matthew.j.casiano@nasa.gov

The presenting author for this paper will be Chad J. Eberhart.
ERG must be notified of any change to the presenting author immediately. Presenter must be a U.S. Citizen; attendance at this meeting is restricted to U.S. Citizens.
Spontaneous instabilities can pose a significant challenge to verification of combustion stability, and characterizing its onset is an important avenue of improvement for stability assessments of liquid propellant rocket engines. Recurrence Quantification Analysis (RQA) is used here to explore nonlinear combustion dynamics that might give insight into instability. Multiple types of patterns representative of different dynamical states are identified within fluctuating chamber pressure data, and markers for impending instability are found. A class of metrics which describe these patterns is also calculated. RQA metrics are compared with and interpreted against another metric from nonlinear time series analysis, the Hurst exponent, to help better distinguish between stable and unstable operation.