Title: Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

Sponsoring organization if SBIR-funded:

Primary Author (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)

- **Name:** Peter A. Liever
 - **U.S. Citizen** Yes No
 - **Organization (contractors provide company name):** CFD Research Corp./Jacobs ESSSA, NASA Marshal Space Flight Center
 - **Address:** Bldg 4203/Rm3421
 - **City:** Marshal Space Flight Center
 - **State:** AL
 - **ZIP Code:** 35812
 - **Phone:** 256-544-3288
 - **Fax:**
 - **Email:** peter.a.liever@nasa.gov

2nd Author Please provide full contact information for each author.

- **Name:** Jeffrey S. West
 - **U.S. Citizen** Yes No
 - **Organization (contractors provide company name):** NASA Marshal Space Flight Center
 - **Address:** Bldg 4203/Rm3102
 - **City:** Marshal Space Flight Center
 - **State:** AL
 - **ZIP Code:** 35812
 - **Phone:** 256-544-6309
 - **Fax:**
 - **Email:** jeffrey.s.west@nasa.gov

3rd Author Please provide full contact information for each author.

4th Author Please provide full contact information for each author.

Management Support

- **Author(s) has confirmed management support (i.e., required resources) is available to prepare, submit, and present this paper at the above subject JANNAF Meeting.**
 - **U.S. Citizenship**

- **The presenting author for this paper will be Peter. A. Liever. ERG must be notified of any change to the presenting author immediately. Presenter must be a U.S. Citizen; attendance at this meeting is restricted to U.S. Citizens.**
A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.