Title: Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

CFD Research Corp./Jacobs ESSSA, NASA Marshal Space Flight Center
Bldg 4203/Rm3421
Marshal Space Flight Center AL 35812
256-544-3288 peter.a.liever@nasa.gov

NASA Marshal Space Flight Center
Bldg 4203/Rm3102
Marshal Space Flight Center AL 35812
256-544-6309 jeffrey.s.west@nasa.gov

Peter A. Liever
Jeffrey S. West

ERG must be notified of any change to the presenting author immediately. Presenter must be a U.S. Citizen; attendance at this meeting is restricted to U.S. Citizens.
A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.