Title: Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

Submitted to: 
- PIB
- MSS
- LPS
- SPS
- Other

Please select ONE subcommittee.

Mission Area:
1
2
3
4
5

Updated Paper? 
- Yes
- No

Student Paper? 
- Yes
- No

Primary Author (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)
- Name: Nicholas L. Case
- Organization (contractors provide company name): NASA-MSFC
- Address: NASA-MSFC ER21
- City: Marshall Space Flight Center
- State: AL
- ZIP Code: 35812
- Phone: 256-544-8789
- Fax: 
- Email: nicholas.l.case@nasa.gov

2nd Author Please provide full contact information for each author.
- Name: David E. Eddleman
- Address: NASA-MSFC ER33
- City: Marshall Space Flight Center
- State: AL
- ZIP Code: 35812
- Phone: 256-544-6410
- Fax: 
- Email: david.e.eddleman@nasa.gov

3rd Author Please provide full contact information for each author.
- Name: Marty R. Calvert
- Address: NASA-MSFC ER31
- City: Marshall Space Flight Center
- State: AL
- ZIP Code: 35812
- Phone: 256.544.1538
- Fax: 
- Email: marty.r.calvert@nasa.gov

4th Author Please provide full contact information for each author.
- Name: David B. Bullard
- Address: NASA-MSFC ER32
- City: Marshall Space Flight Center
- State: AL
- ZIP Code: 35812
- Phone: 256.544.3787
- Fax: 
- Email: brad.bullard@nasa.gov

Management Support
- Author(s) has confirmed management support (i.e., required resources) is available to prepare, submit, and present this paper at the above subject JANNAF Meeting.
- U.S. Citizenship

The presenting author for this paper will be Nicholas L. Case. ERG must be notified of any change to the presenting author immediately. Presenter must be a U.S. Citizen; attendance at this meeting is restricted to U.S. Citizens.
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center’s East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

Additional Authors:

Michael A. Martin-ER22
NASA-MSFC
256-544-4478
michael.a.martin@nasa.gov

Thomas R. Wall-ET10
NASA-MSFC
256-544-5672
thomas.r.wall@nasa.gov