Abstract Submittal Form

Abstract Due Date: Monday, 11 July 2016

Fields with an asterisk (*) are required.

Title: Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome

Submitted to: PIB / MSS / LPS / SPS / Other

Refer to Call for Papers for description of Subcommittee Mission Areas and select one from the choices below.

Mission Area:

- [] 1
- [x] 2
- [] 3
- [] 4
- [] 5

Updated Paper? [] Yes [x] No

Student Paper? [] Yes [x] No

Primary Author (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)

* Name: Dr. H. Q. Yang
 * U.S. Citizen [x] Yes [] No
* Organization (contractors provide company name): CFD Research Corporation, Jacobs ESSSA Group
* Address: Bldg 4203/Rm3432
 * Phone: 256-5448978
 * Fax:
 * Email: Hong.Q.Yang@nasa.gov

2nd Author Please provide full contact information for each author.

* Name: Dr. Jeffrey West
 * U.S. Citizen [x] Yes [] No
* Organization (contractors provide company name): NASA/MSFC
* Address: Bldg 4203/Rm3102
 * City: MSFC
 * State: AL
 * ZIP Code: 36512
 * Phone: 256-544-6309
 * Fax:
 * Email: jeffrey.s.west@nasa.gov

3rd Author Please provide full contact information for each author.

* Name: Mr. Jacob Brodnick
 * U.S. Citizen [x] Yes [] No
* Organization (contractors provide company name): Jacobs Technology
* Address: Bldg 4203/Rm3431
 * City: MSFC
 * State: AL
 * ZIP Code: 38512
 * Phone: 256-544-7576
 * Fax:
 * Email: Jacob.M.Brodnick

4th Author Please provide full contact information for each author.

* Name: Dr. Chad Eberhart
 * U.S. Citizen [x] Yes [] No
* Organization (contractors provide company name): Jacobs Technology
* Address: Bldg 4203/Rm3106
 * City: MSFC
 * State: AL
 * ZIP Code: 36512
 * Phone: 256-544-3175
 * Fax:
 * Email: chad.j.eberhart@nasa.gov

Management Support

U.S. Citizenship
Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.

Audio-Visual Requirements and Room Setup

Standard equipment supplied in each meeting room includes: Laptop (with sound), LCD Projector (minimum 1024 x 768 native resolution and 4500 lumens), Screen, Podium Microphone, Wireless Lavalier Microphone. Rooms are typically set in “Theater” style (rows of chairs). If your presentation requires any unusual A-V equipment or set-up, please indicate those requirements below.

Enter any unusual A-V or room setup requirements here. First check the list of standard equipment and typical room setup described above. This section will EXPAND to accommodate your text.

- If your abstract is anything other than Distribution Statement A, you must upload both pages of this completed form to the CPIAC secure website. Upload instructions can be found in the Call for Papers on page 3.
- Distribution Statement A abstracts may be uploaded or emailed.
- By submitting an abstract, you agree to both complete a final paper for publication and to attend the meeting to present this information.
- Direct questions to Shelley Cohen, by phone at 410.992.7302 x 215, or email to scohen@erg.jhu.edu.

Form Date: 5/25/16