Abstract Submittal Form

Abstract Due Date: Monday, 11 July 2016

Fields with an asterisk (*) are required.

Title:
Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome

Submitted to:
- [] PIB
- [] MSS
- [] LPS
- [] SPS
- [] Other

Please select ONE subcommittee.

Mission Area:
- [] 1
- [] 2
- [] 3
- [] 4
- [] 5

Updated Paper? [] Yes [] No

Student Paper? [] Yes [] No

Sponsoring organization if SBIR-funded:

If more than 4 authors, place their complete contact information (as requested below) on P.2 after abstract text.

Primary Author (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)

- **Name:** Dr. H. Q. Yang
 - U.S. Citizen [] Yes [] No
- **Organization:** CFD Research Corporation, Jacobs ESSSA Group
- **Address:** Bldg 4203/Rm3432
- **City:** MSFC
 - State: AL
 - ZIP Code: 35812
- **Phone:** 256-5448978
 - Fax:
 - Email: Hong.Q.Yang@nasa.gov

2nd Author

- **Name:** Dr. Jeffrey West
 - U.S. Citizen [] Yes [] No
- **Organization:** NASA/MSFC
- **Address:** Bldg 4203/Rm3102
- **City:** MSFC
 - State: AL
 - ZIP Code: 38512
- **Phone:** 256-544-6309
 - Fax:
 - Email: jeffrey.s.west@nasa.gov

3rd Author

- **Name:** Mr. Jacob Brodnick
 - U.S. Citizen [] Yes [] No
- **Organization:** Jacobs Technology
- **Address:** Bldg 4203/Rm3431
- **City:** MSFC
 - State: AL
 - ZIP Code:
- **Phone:** 256-544-7576
 - Fax:
 - Email: Jacob.M.Brodnick

4th Author

- **Name:** Dr. Chad Eberhart
 - U.S. Citizen [] Yes [] No
- **Organization:** Jacobs Technology
- **Address:** Bldg 4203/Rm3106
- **City:** MSFC
 - State: AL
 - ZIP Code: 38512
- **Phone:** 256-544-3175
 - Fax:
 - Email: chad.j.eberhart@nasa.gov

- Check this box if you are listing additional authors on page 2 after the abstract.

- Management Support []
- U.S. Citizenship []
Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.