title: Extension of Miles Equation for Ring Baffle Damping Predictions to Small Slosh Amplitudes and Large Baffle Widths.

Submitted to: [PIB](#) [MSS](#) [LPS](#) [SPS](#) [Other](#) *Please select ONE subcommittee.*

Refer to [Call for Papers](#) for description of Subcommittee Mission Areas and select **one** from the choices below.

Mission Area: 1 2 3 4 5

Updated Paper? Yes No *Student Paper?* Yes No

Sponsoring organization if SBIR-funded:

IF MORE THAN 4 AUTHORS, PLACE THEIR COMPLETE CONTACT INFORMATION (as requested below) ON P.2 AFTER ABSTRACT TEXT.

Primary Author (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)

<table>
<thead>
<tr>
<th>Name</th>
<th>U.S. Citizen</th>
<th>Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff West</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization (contractors provide company name): NASA/MSFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: Bldg. 4203/Rm 3102</td>
</tr>
<tr>
<td>City: MSFC</td>
</tr>
<tr>
<td>Phone: 256 544-6309</td>
</tr>
<tr>
<td>Fax:</td>
</tr>
<tr>
<td>ZIP Code: 35812</td>
</tr>
<tr>
<td>Email: jeffrey.s.west@nasa.gov</td>
</tr>
</tbody>
</table>

2nd Author Please provide full contact information for each author.

<table>
<thead>
<tr>
<th>Name</th>
<th>U.S. Citizen</th>
<th>Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Q. Yang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization (contractors provide company name): CFDRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: Bldg 4203/Rm 3432</td>
</tr>
<tr>
<td>City: MSFC</td>
</tr>
<tr>
<td>Phone: 256 544-8978</td>
</tr>
<tr>
<td>Fax:</td>
</tr>
<tr>
<td>ZIP Code: 35812</td>
</tr>
<tr>
<td>Email: hong.q.yang@nasa.gov</td>
</tr>
</tbody>
</table>

3rd Author Please provide full contact information for each author.

<table>
<thead>
<tr>
<th>Name</th>
<th>U.S. Citizen</th>
<th>Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacob Brodnick</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization (contractors provide company name): Jacobs Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: Bldg 4203/Rm 3431</td>
</tr>
<tr>
<td>City: MSFC</td>
</tr>
<tr>
<td>Phone: 256 544-7576</td>
</tr>
<tr>
<td>Fax:</td>
</tr>
<tr>
<td>ZIP Code: 35812</td>
</tr>
<tr>
<td>Email: jacob.m.brodnick@nasa.gov</td>
</tr>
</tbody>
</table>

4th Author Please provide full contact information for each author.

<table>
<thead>
<tr>
<th>Name</th>
<th>U.S. Citizen</th>
<th>Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco Sansone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization (contractors provide company name): Jacobs Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: Bldg 4203/Rm 3430</td>
</tr>
<tr>
<td>City: MSFC</td>
</tr>
<tr>
<td>Phone: 256 544-1583</td>
</tr>
<tr>
<td>Fax:</td>
</tr>
<tr>
<td>ZIP Code: 35812</td>
</tr>
<tr>
<td>Email: marco.d.sansone@nasa.gov</td>
</tr>
</tbody>
</table>

Management Support *U.S. Citizenship*
The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.

Last co-author:
Dogulas Westra, Bldg 4203/Rm 3141 MSFC AL, 35812
douglas.g.westra@nasa.gov

Audio-Visual Requirements and Room Setup

Standard equipment supplied in each meeting room includes: Laptop (with sound), LCD Projector (minimum 1024 x 768 native resolution and 4500 lumens), Screen, Podium Microphone, Wireless Lavalier Microphone. Rooms are typically set in “Theater” style (rows of chairs). If your presentation requires any unusual A-V equipment or set-up, please indicate those requirements below.

Enter any unusual A-V or room setup requirements here. First check the list of standard equipment and typical room setup described above. This section will EXPAND to accommodate your text.

- If your abstract is anything other than Distribution Statement A, you must upload both pages of this completed form to the CPIAC secure website. Upload instructions can be found in the Call for Papers on page 3.
- Distribution Statement A abstracts may be uploaded or emailed.
- By submitting an abstract, you agree to both complete a final paper for publication and to attend the meeting to present this information.
- Direct questions to Shelley Cohen, by phone at 410.992.7302 x 215, or email to scohen@erg.jhu.edu.