Abstract Submittal Form

Abstract Due Date: Monday, 11 July 2016

Fields with an asterisk (*) are required.

* Title: Extension of Miles Equation for Ring Baffle Damping Predictions to Small Slosh Amplitudes and Large Baffle Widths.

* Submitted to: PIB MSS LPS SPS Other Please select ONE subcommittee.

Refer to Call for Papers for description of Subcommittee Mission Areas and select one from the choices below.

* Mission Area: 1 2 3 4 5

* Updated Paper? Yes No

* Student Paper? Yes No

*Sponsoring organization if SBIR-funded:

IF MORE THAN 4 AUTHORS, PLACE THEIR COMPLETE CONTACT INFORMATION (as requested below) ON P.2 AFTER ABSTRACT TEXT.

**Primary Author** (NOTE: will receive all correspondence regarding participation in this program and is assumed to be presenter)

* Name: Jeff West

* Organization (contractors provide company name): NASA/MSFC

* Address: Bldg. 4203/Rm 3102

* City: MSFC

* State: AL

* ZIP Code: 35812

* Phone: 256 544-6309

* Fax: 

* Email: jeffrey.s.west@nasa.gov

**2nd Author** Please provide full contact information for each author.

Name: H. Q. Yang

* U.S. Citizen Yes No

Organization (contractors provide company name): CFDRC

Address: Bldg 4203/Rm 3432

City: MSFC

State: AL

ZIP Code: 35812

Phone: 256 544-8978

Fax: 

Email: hong.q.yang@nasa.gov

**3rd Author** Please provide full contact information for each author.

Name: Jacob Brodnick

* U.S. Citizen Yes No

Organization (contractors provide company name): Jacobs Technology

Address: Bldg 4203/Rm 3431

City: MSFC

State: AL

ZIP Code: 35812

Phone: 256 544-7576

Fax: 

Email: jacob.m.brodnick@nasa.gov

**4th Author** Please provide full contact information for each author.

Name: Marco Sansone

* U.S. Citizen Yes No

Organization (contractors provide company name): Jacobs Technology

Address: Bldg 4203/Rm 3430

City: MSFC

State: AL

ZIP Code: 35812

Phone: 256 544-1583

Fax: 

Email: marco.d.sansone@nasa.gov

* Check this box if you are listing additional authors on page 2 after the abstract.

* Management Support

* U.S. Citizenship
Author(s) has confirmed management support (i.e., required resources) is available to prepare, submit, and present this paper at the above subject JANNAF Meeting. The presenting author for this paper will be . ERG must be notified of any change to the presenting author immediately. Presenter must be a U.S. Citizen; attendance at this meeting is restricted to U.S. Citizens.

For CADRE Use Only:  

<table>
<thead>
<tr>
<th>Paper #</th>
<th>Paper ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JANNAF</td>
<td></td>
</tr>
<tr>
<td>PIB / 11th MSS / 9th LPS / 8th SPS</td>
<td></td>
</tr>
<tr>
<td>Joint Subcommittee Meeting</td>
<td></td>
</tr>
<tr>
<td>5 – 9 December 2016</td>
<td></td>
</tr>
</tbody>
</table>

Abstract Due Date: Monday, 11 July 2016  

Unclassified Abstract (250 – 300 words; do not include figures or tables)

* Type or copy and paste your abstract here. THIS SECTION WILL EXPAND TO ACCOMMODATE LENGTH OF YOUR TEXT. NOTE: Your abstract will NOT be published.

The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.

Last co-author:  
Douglas Westra, Bldg 4203/Rm 3141 MSFC AL, 35812  
douglas.g.westra@nasa.gov

Audio-Visual Requirements and Room Setup

Standard equipment supplied in each meeting room includes: Laptop (with sound), LCD Projector (minimum 1024 x 768 native resolution and 4500 lumens), Screen, Podium Microphone, Wireless Lavalier Microphone. Rooms are typically set in “Theater” style (rows of chairs). If your presentation requires any unusual A-V equipment or set-up, please indicate those requirements below.

Enter any unusual A-V or room setup requirements here. First check the list of standard equipment and typical room setup described above. This section will EXPAND to accommodate your text.

- If your abstract is anything other than Distribution Statement A, you must upload both pages of this completed form to the CPIAC secure website. Upload instructions can be found in the Call for Papers on page 3.
- Distribution Statement A abstracts may be uploaded or emailed.
- By submitting an abstract, you agree to both complete a final paper for publication and to attend the meeting to present this information.
- Direct questions to Shelley Cohen, by phone at 410.992.7302 x 215, or email to scohen@erg.jhu.edu.

Form Date: 5/25/16