Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

Jeffrey Ouellette
NASA Armstrong Flight Research Center
AIAA SciTech
January 9, 2017
Increasing Aspect Ratio

• Improves aerodynamic performance
• Increased flexibility
 • Reduces aeroelastic margin
 • Significant weight penalty to maintain margin
• Greater interaction with the flight dynamics
Active Flutter Suppression

• Use flight controls to maintain stability
 • Does not have a weight penalty
• Past efforts have had mixed results
 • B-52 successfully suppress flutter 1973
 • DAST was unsuccessful
• Body freedom flutter
 • Structural dynamics destabilize flight dynamics
Then and Now

• Found several issues with existing modeling approaches

• Development to date
 • Keep trying to patch issues
 • Inconsistencies between disciplines
 • Coordinate systems
 • Definition of parameters
 • Etc.

• Building upon previous approaches
 • Intentionally similar to existing approaches
 • Addressing inconsistencies between disciplines
The Problem: State Consistency

- Models generally made for specific mass/flight condition
- Full envelope design
 - What happens between these conditions?
- No sign convention in mode shapes
 - The direction of the mode shapes can change
- New modes can appear with masses
- Ordering of the modes can change
 - Finite element models sort by frequency
Previous methods: State Consistency

- Often simply ignored
 - Does not appear on simpler configurations
 - Can be bypassed by specific control architectures
- Corrective transformations
 - Applied to final models
 - Often not robust
 - Are there equivalent states?

Consistent Coefficient

- Airspeed, KEAS
- Fuel Weight, lbs
The Solution: Assumed Modes

- Using an assumed mode method
 - The same mode shapes are used for all conditions
 - Changes are in modal mass and stiffness matrices
 - To match kinetic and potential (strain) energy
 - Aerodynamic coefficients are constant
- Assumed modes method is quite old
 - Using for state consistency is new
- Which mode shapes to use?
 - Are there sufficient mode shapes?
 - Are all of the modes represented?
- This is an issue with any method
The Problem: Low frequency Dynamics

Why do we care?

• Static Instabilities
 • Short-period frequency is reduced
 • Very strong coupling with the phugoid
• Often less control margin
 • MIL-STD-9490 below 0.06 Hz
 • Requires 4.5 dB gain margin
 • Requires 30 deg phase margin

Do not want separate models for these dynamics

What are the primary effects?

• Phugoid mode
 • Dominates low frequency behavior
 • Transfer of energy
 • Kinetic energy
 • Potential energy (gravity)
• Large velocity variations
 • Flutter methods assume constant velocity
Previous method: Apply rigid body model

• **Velocity Variations**
 - Forces change due to changes in dynamic pressure
 - \(\frac{\partial}{\partial V^*} q = \frac{2}{V} \bar{q} \)
 - Applying 6DoF coefficients neglects change in force on the structure

\[
A_{1_{aug}} = S \begin{bmatrix}
-2C_{D_0} & 0 & C_{L_0} & 0 & \cdots & 0 \\
-2C_{L_0} & 0 & -C_{D_0} & 0 & \cdots & 0 \\
2\bar{c}C_{D_0} & 0 & 0 & 0 & \cdots & 0 \\
2C_{\eta_1} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2C_{\eta_1} & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

• **Gravity**
 - Can use 6 DoF results
 - If origin is at the center of gravity
 - Assumed modes complicates this
 - Mass matrix is not diagonal
 - Center of gravity moves with structural deformations

January 9, 2017
The Solution: Gravitational Forces

• Using the complete mass matrix from the finite element model
 • Modal mass is not diagonal
 • Due to assumed modes method

• For each element
 • \(\mathbf{F}_{\text{gravity}} = m_{\text{element}} \mathbf{g} (\hat{z} + \mathbf{T}(\alpha_0)\theta_{\text{element}}) \)
 • \(\hat{z} \): Vertical vector
 • \(\mathbf{T}(\alpha_0) \): Rotation matrix from trim angle
 • \(\theta_{\text{element}} \): Rotation of element from mode shape
The Problem: Unsteady Aerodynamics

- The structural motions are high frequency
 - On the order of the dynamics of the flow
 - Significant delays in the response
 - Need to model the flow dynamics
- Frequency domain aeroelasticity tools
 - Considering harmonic motions simplifies the dynamics
 - Time histories are required for evaluating closed loop performance
 - No closed form solution from frequency response to time history
Previous method:
Rational Function Approximation

• Rogers Rational Function Approximation

 \[\{q\} \approx (A_0 + A_1 ik + A_2 k^2 + D(ikI - R)^{-1} E ik)\eta \]

• Has been used many times (40+ years old)
• Developed with weak interactions between flight dynamics and aeroelasticity
• Uses a modal coordinate system

 • Inertial coordinate system (origin is fixed in space)
 • Does not work for flight mechanics
 • Origin must move with the aircraft
Previous method: Time domain transformation

• Transformation
 • Applied to final model
 • Equivalent to
 • $A_0^* = A_0 T \eta_{2x} + A_1 T \eta_{2x}$
 • $A_1^* = A_1 T \eta_{2u} + A_2 T \eta_{2x} T^{-1} T \eta_{2u}$
 • $A_2^* = A_2 T \eta_{2u}$
 • Results in erroneous coefficients
 • Vehicle heading does not effect aerodynamic forces
 • Issues are emphasized in model reduction
 • Removing increases the error in the RFA
The Solution: Frequency domain Transformation

• Apply transformation directly to frequency domain aerodynamics
 \[\{ i k \eta \} = \begin{bmatrix} T \dot{\eta} u & T \dot{\eta} x \\ 0 & T \eta 2x \end{bmatrix} \{ u \} \]

• Stability Axis RFA
 \[\{ q \} \approx A_0 x + (A_1 + A_2 i k + D (i k I - R)^{-1} E) u \]
 • Separate positions \(x \) and velocities \(u \)
 • Euler angles appear only in \(A_0 \)
 • Only need to constrain single matrix
 • Curve fit remains minimum error solution
Applying the method: X-56A MUTT

• Designed for testing active flutter suppression
 • Flexible wings have unstable flutter modes

• Currently have stiff wing data
 • No unstable flutter modes

• Using frequency domain potential flow aerodynamics
Results

Comparing to rigid models

Comparing to flight data

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Fuel Mass</th>
<th>Airspeed</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>Pitch</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>Pitch</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
<td>Pitch</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>High</td>
<td>Roll</td>
</tr>
</tbody>
</table>
Flight Data Comparison: Pitch response, low fuel, low speed

Pitch Rate

- Magnitude, dB
 - Flight test (blue)
 - Model (red)
- Phase, deg
- Coherence

Wing Tip Accelerometer

- Magnitude, dB
 - Flight test (blue)
 - Model (red)
- Phase, deg
- Coherence

Frequency, Hz

Short-period
First wing bending
Flight Data Comparison: Pitch response, low fuel, high speed

Pitch Rate

Magnitude, dB

Phase, deg

Coherence

Frequency, Hz

Wing Tip Accelerometer

Magnitude, dB

Phase, deg

Coherence

Frequency, Hz

January 9, 2017
Flight Data Comparison: Roll Response, low fuel, high speed

Roll Rate

Wing Tip Accelerometer

January 9, 2017
Conclusions

• Model generation for body freedom flutter

• Addressing issues in:
 • State Consistency
 • Low frequency dynamics
 • Unsteady aerodynamics

• Applied approach to X-56A MUTT
 • Comparing to flight test data