INTRODUCTION

<table>
<thead>
<tr>
<th>Name/Identifier</th>
<th>Date Range</th>
<th>Reasons for Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea Bomb</td>
<td>December 10-13, 2015</td>
<td>One of the strongest (924 mb center) non-tropical storms on record</td>
</tr>
<tr>
<td>Winter "Underdog"</td>
<td>January 17-19, 2016</td>
<td>Developed rapidly despite small size</td>
</tr>
<tr>
<td>Spring Transition</td>
<td>April 5-9, 2016</td>
<td>Late season cyclone; Abrupt development</td>
</tr>
<tr>
<td>IL Songda Transition</td>
<td>October 12-15, 2016</td>
<td>Lost most of its tropical features; Abrupt extratropical transition & development</td>
</tr>
</tbody>
</table>

DATA & METHODS

- **Himawari-8 Airmass RGB**
 - Used to help quantify Airmass RGB
 - Examples of instruments:
 1. Aqua’s Atmospheric Infrared Sounder (AIRS)
 2. 5-NPPS Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS)
 3. Metop-B’s Infrared Atmospheric Sounding Interferometer (IASI)

- **Scatterometer & Microwave Radiometer**
 - Used to verify hurricane-force wind events
 - Measures backscatter of radar signal for wind speed & direction
 - Advanced Scatterometer (ASCAT-A/B)
 - Microwave Radiometer
 - Measures microwave signal response for only wind speed
 - Advanced Microwave Scanning Radiometer (AMSR-E/2)

REFERENCES

CONCLUSION

ACKNOWLEDGEMENTS

I would like to thank my mentors: Michael Folmer, Joe Phillips, and Joe Sienkiewicz from Ocean Prediction Center, and Emily Berndt from NASA SPoRT.

I would also like to thank University of Maryland for their support and guidance.

CONTACT

kelsey.malloy@noaa.gov
michael.folmer@noaa.gov