On the Development of a New Nonequilibrium Chemistry Model for Mars Entry

R. L. Jaffea, D. W. Schwenkea, G. M. Chabana, D. K. Prabhua, C. O. Johnstonb and M. Panesic

aNASA Ames Research Center
bNASA Langley Research Center
cUniversity of Illinois at Urbana-Champaign

AIAA SciTech 2017

January 11, 2017
Motivation

- NASA has been embarked on a program of scientific exploration of Mars by landing increasingly larger and heavier payloads
 - Prediction of thermal load used to determine TPS requirements
 - Testing in ground facilities and CFD simulations play critical roles

Nonequilibrium chemistry model currently in use is 20+ years old and based on mostly 35+ year old experiments

We are critically examining this “legacy” model and developing a new model based on computational chemistry and physics

Our objective is to reduce the uncertainty in predictions of thermal loads for Mars entry
• Legacy nonequilibrium chemistry model
• Computational approach for developing a new model
• Rate Coefficients
 - Chemical reactions for Mars entry
 - Uncertainty Quantification
 - CO dissociation
• Comparison with other models
 - Convective heating
 - Radiative Flux
• Next steps in developing the nonequilibrium chemistry model
• Conclusions
Legacy Mars Chemistry Model

• Nonequilibrium between translational and internal energy modes of the flowfield species in the bow shock layer
 - After shock wave gas is compressed and heated
 - Two temperatures (T = T_r and T_v = T_{el-st})
 - First order relaxation equation describes evolution of T_v from the shock to thermal equilibrium (T_v = T); governed by relaxation time τ_v
 - Dissociation reactions modeled by Arrhenius rate expression using an average temperature T_{av} = (T \cdot T_v)^{1/2}
 - Rate coefficient parameters originally taken from 1960’s-70’s shock tube experiments, but subjected to empirical adjustment

• Developed by Chul Park at NASA Ames 1986-1992 (Park et al, JTHT 8, 9-23 (1994))

• Recent modification of parameters by Johnston and Brandis (JSQRT 149, 303-317 (2014))
Mars Entry: What Collisional Processes are Important?

- Mars atmosphere is ~96% CO$_2$, ~2% N$_2$ ~2% Ar
- Dissociation
 - CO$_2$ (5eV) very fast and nearly complete
 - CO (11 eV) slow, rate determining process
- Heterogeneous exchange reactions provide lower energy (i.e. faster) routes for CO$_2$ and CO dissociation
 - CO$_2$ + O → CO + O$_2$
 - CO + O → C + O$_2$
 - CO + N → O + CN
 - CO + C → O + C$_2$

For Mars entry at 6-8 km/s, the rate of CO dissociation is critical because CO 4$^\text{th}$ positive emission is the dominant source of radiative heating
New Paradigm for a Nonequilibrium Chemistry Model

• **Accurate** quantum mechanics calculations to quantify interaction energy between atoms and molecules
 - Potential Energy Surface (PES) obtained from solution of Schrödinger equation
 - Repeated for many geometric arrangements of the atoms (for \(n \) atoms there are \(3n-6 \) degrees of freedom)
 - Goal is \(\leq \pm 5 \) kJ/mol relative accuracy (~0.05 eV, ~400 cm\(^{-1}\))

• Classical mechanics simulations of heavy particle collisions to compute collision cross sections and rate coefficients
 - Compute trajectories of many individual collisions (Quasi-Classical Trajectory or QCT calculation)
 - Monte Carlo sampling used to reproduce random or thermal collisional distributions

This strategy should yield rate coefficients accurate to \(\pm 20\% \)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Experiment</th>
<th>PES</th>
<th>QCT rate coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 CO₂ + M → CO + O + M M = CO₂, N₂, CO, O</td>
<td>Shocktube expts 1968-74 & 1984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>※D4 O₂ + M → O + O + M M = N₂, CO, O</td>
<td>Expts 1960s, 84 Hanson 2016</td>
<td>Varandas 1988</td>
<td>Andrienko 2016</td>
</tr>
<tr>
<td>E1 CO₂ + O → CO + O₂</td>
<td>Ibragimova 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>※E4 NO + O → O₂ + N</td>
<td>Fontijn 1998</td>
<td>Sayos 2002</td>
<td>Sayos 2003</td>
</tr>
<tr>
<td>E5 CO + N → CN + O</td>
<td>Nyman 2000-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E6 CO + N → NO + C</td>
<td>Nyman 2000-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E7 CN + O → NO + C</td>
<td>Roth 1990</td>
<td>Nyman 2000-2008</td>
<td></td>
</tr>
<tr>
<td>E8 CO + C → C₂ + O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uncertainty Quantification (UQ)

- UQ used to identify critical reactions
 - Monte Carlo sensitivity analysis
 - 96% CO₂/4% N₂ (free stream at 0.25 torr and 300 K)
 - 1-d shock at 7.75 km/s
 - Random sampling of rate coefficient and vibrational relaxation parameters
 - Two criteria considered: sensitivity to CO 4th positive radiative intensity and sensitivity to attaining chemical equilibrium ($T/T_{eq} = 1.05$)
- Repeated many times for statistical analysis
- Key reactions:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Sensitivity to Radiative Flux</th>
<th>Sensitivity to Equilibration Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO + O → C + O + O</td>
<td>55%</td>
<td>48%</td>
</tr>
<tr>
<td>CO + CO → C + O + CO</td>
<td>25%</td>
<td>10%</td>
</tr>
<tr>
<td>CN + O → C + NO</td>
<td>9%</td>
<td>24%</td>
</tr>
<tr>
<td>CO + O → C + O₂</td>
<td>4%</td>
<td>8%</td>
</tr>
</tbody>
</table>
• The radiative heat flux experienced by spacecraft entering the Martian atmosphere at 5-8 km/s is mostly due to the CO 4th positive band system (\(\lambda < 200\) nm)
 - Radiative heating is therefore proportional to the mole fraction of CO in the bow shock layer
 - CFD-Radiative transport calculations using the T-T\textsubscript{V} model (legacy Mars chemistry model) predict greater radiance than observed in tests run in the Electric Arc Shock Tube (EAST) at Ames
 - Johnston and Brandis (JQSRT, 2014) scaled some of the rate coefficient parameters to force agreement between CFD and EAST for CO 4th positive

• Ab initio PESs have been computed for CO + Ar and CO + O and used in QCT calculations of CO dissociation rate coefficients (Schwenke et al., J Chem. Phys. submitted)
 - Experimental data for CO + Ar seem more reliable than for CO + O
 - Efficiency of different collision partners (M) for promoting dissociation has been expressed as ratio \(k(\text{CO+M})/k(\text{CO+Ar})\)
Rate Coefficient Ratios for CO Dissociation

• Early experimental values (Baulch, based on pre-1972 shock tube experiments)
 - \(\frac{k_{CO+CO}}{k_{CO+Ar}} = 1-2 \quad \frac{k_{CO+O}}{k_{CO+Ar}} = 15 \)

• Park (1994) T-T_v model
 - \(\frac{k_{CO+CO}}{k_{CO+Ar}} = 10 \quad \frac{k_{CO+O}}{k_{CO+Ar}} = 15 \)

• Johnston and Brandis (2014)
 - \(\frac{k_{CO+CO}}{k_{CO+Ar}} = 10 \quad \frac{k_{CO+O}}{k_{CO+Ar}} = 15 \)
 - \(\frac{k_{CO+Ar(JB)}}{k_{CO+Ar(Park)}} = 5 \)

• Objectives of our QCT rate coefficient calculations:
 - Evaluate the accuracy of the experimental data used in the legacy model
 - Determine these rate coefficient ratios as a function of temperature
 - Study the importance of the exchange reactions in the shock layer
After nearly all of the CO$_2$ is dissociated, CO and O are the major species (with equal mole fraction)

Experimental data
- Davies (1964) CO + Ar, CO, O
- Appleton (1970) CO + Ar, CO, O
- Hanson (1974) CO + CO, O
- Mick & Roth (1993) CO + Ar, CO
- Park (1994) T-T$_v$ model

- Scatter in experimental data is small
- Very good agreement between QCT and Appleton and Mick and Roth expt.
- Fair to good agreement between QCT and Davies and Park (94)
• Three triplet PESs with equal statistical weight govern CO + O (\(^3\)P) collisions
 - Lead to different non-linear CO\(_2\) triplet electronic states (\(1\ ^3A',\ 1\ ^3A''\) and \(2\ ^3A''\)) with O-C-O angle \(\sim 120^\circ\)
 - \(1\ ^3A'\) has well depth \(\sim 75\ \text{kJ/mol} \ (\sim 0.8\ \text{eV})\); other states are more weakly bound

• Heterogeneous exchange reaction forming O\(_2\) + C also possible on these PESs
 - Reaction is endothermic by 6.1 eV (low in comparison to the 11.2 eV dissociation energy of CO)

• All three PESs used for QCT calculations of CO dissociation and exchange reactions
The CO + O Rate Coefficients (experiment)

- Considerable scatter in the Appleton data
- Fairly good agreement between Appleton (8,000-15,000 K) and Hanson (5500-9000 K) data
- Hanson 3-parameter fit is not suitable for extrapolation
- Park and Johnston recommendations bracket the experimental results
CO + O Rate Coefficients (only dissociation)

- Good agreement between QCT dissociation rate coefficient and Park model
- Agreement between QCT dissociation rate coefficient and expt is poor
- \(k_{CO+O}/k_{CO+Ar} \sim 3-5 \) for QCT not 15 as in Park model
CO + O Rate Coefficients (dissoc. + exchange)

- Addition of hetero exchange rate coeff to dissociation greatly improves agreement with expt (especially at lower temperatures)
- Good agreement with Johnston scaled value ~8,000 K, but temperature dependence is quite different
- Exchange is the dominant CO removal process for T< 8000K

This exchange reaction was not previously thought to be important
Key Points for CO Dissociation

• Experimental data look quite good!
 - However, it is advantageous to use experimental data points (if available), not just Arrhenius expressions

• Heterogeneous exchange reaction provides an important pathway for CO removal, especially for T < 10,000 K
 - Converts CO to O$_2$, which is readily dissociated at these temperatures
 - Experimental CO dissociation rate coefficients implicitly include this reaction by having spuriously large dissociation rates and larger temperature exponents
 - When combined with dissociation, agreement between QCT and experimental results is excellent

• QCT rate coefficients needed for CO + CO to complete work on this set of reactions
Use in CFD Simulations

- Used new rate coefficient data in simulations of convective heating for LENS XX shock tunnel tests
 - Pure CO\textsubscript{2} flow impinging on 12” diameter model
 - Flow enthalpies up to 43 MJ/kg
 - Compared Park94 model with new CO rate coefficients from present work to the Johnston modification of the original Park model in DPLR simulations
Moderate enthalpy (14.3 MJ/kg):
- Convective heat flux predictions for the models are barely distinguishable
- CFD and test data in good agreement
- This condition applicable to Mars entry

High enthalpy (43 MJ/kg):
- Heat flux prediction lower for new rate coefficients
- Agreement between CFD and test data is not good
- This condition is applicable to Venus entry
Use in CFD Simulations

• Used new rate coefficient data in simulations of CO 4^{th} positive and CN violet integrated intensities from EAST tests
 - 96% CO$_2$/4% N$_2$ in Electric Arc Shock Tube at NASA Ames
 - Flow enthalpy up to 43 MJ/kg
 - Compared Park94 with new CO rate coefficients from present work with Johnston modification and the original Park model in LAURA-HARA simulations
Simulation vs EAST Test Data

$P_0 = 0.25$ torr and shockspeed $= 6.43$ km/s
Simulation vs EAST Test Data

$P_0 = 0.1$ torr and shockspeed = 7.98 km/s
On-going Work

• Potential energy surfaces:
 - PES for CO + CO collisions to enable determination of rate coefficients for CO dissociation by CO + CO collisions

• Rate coefficients:
 - QCT calculations for CO + N reactions forming CN + O and NO + C
 - QCT calculations for O$_2$ dissociation and Zel’dovich reactions (N$_2$ + O and NO + O) using published PESs

• Analysis of quasi-steady state (QSS) models and internal energy relaxation (τ_v, τ_{int}) using coarse-grained QCT methods developed by Prof. Panesi at U. Illinois at Urbana-Champaign

• Examination of alternative multi-temperature models and other approaches to describing nonequilibrium flows
Conclusions

• The effort to create a new physics-based model for describing nonequilibrium phenomena in Mars entry flowfields is bearing fruit.

• Potential energy surfaces and thermal rate coefficients for dissociation and exchange reactions have been computed for many of the important chemical reactions:
 - Independent calculations for N_2 dissociation from two research groups show remarkable agreement.
 - Rate coefficients for different dissociation reactions show limitations and successes in the older data from shock tube experiments.

• Work is progressing toward creation of a data base of QCT rate coefficients for the complete set of heavy particle reactions for modeling Earth and Mars entry:
 - Relaxation parameters (τ_v) and thermochemical data (specific heats, enthalpies and entropies) are also being computed.

• We are also examining alternatives to the $T-T_v$ model using coarse-grained QCT calculations.
Acknowledgements

• Support from the Entry Systems Modeling Program (NASA Space Technology Directorate)

• NASA Collaborators
 - David Schwenke
 - Galina Chaban
 - Winifred Huo
 - Lu Xu

• U. Illinois Collaborators
 - (Prof) Marco Panesi
 - Simone Venturi
 - Robyn Mcdonald

Mars tourism is coming!