Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

Dongming Zhu, Bryan Harder, Ramakrishna Bhatt, Doug Kiser, Valerie L. Wiesner

Materials and Structures Division
NASA Glenn Research Center
Cleveland, Ohio 44135, USA

Ceramic Expo
April 26-28, 2016
Cleveland, Ohio 44135
Durable Environmental Barrier Coating Systems for Ceramic Matrix Composites (CMCs):
Enabling Technology for Next Generation Low Emission, High Efficiency and Light-Weight Propulsion

— NASA Environmental barrier coatings (EBCs) development objectives
 • Help achieve future engine temperature and performance goals
 • Ensure system durability – towards prime reliant coatings
 • Establish database, design tools and coating lifing methodologies
 • Improve technology readiness
NASA Environmental Barrier Coating Development Goals

Emphasize temperature capability, performance and durability

- 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
- 2700°F (1482°C) EBC bond coat technology for supporting next generation engines
- Develop innovative coating technologies and life prediction approaches
 - Meet 1000 h for subsonic aircraft and 9,000 h for supersonics/high speed aircraft hot-time life requirements

* Recession: <5 mg/cm² per 1000 hr (40-50 atm., Mach 1~2)
** Component strength and toughness requirements

Temperature Capability

2800°F combustor TBC
2500°F Turbine TBC

Increase in ΔT across T/EBC

3000°F+ (1650°C+)
2700°F (1482°C+)
2400°F (1316°C) Gen I and Gen II SiC/SiC CMCs
2000°F (1093°C)

3000°F SiC/SiC CMC airfoil and combustor technologies
2700°F SiC/SiC thin turbine EBC systems for CMC airfoils

Ceramic Matrix Composite
Single Crystal Superalloy

Gen I – Current commercial
Gen II
Gen III
Gen IV

Year
Outline

– Advanced EBC systems development for CMC airfoils and combustors
 • Prime-reliant EBCs for CMCs: a turbine engine design requirement
 • Fundamental recession of SiC/SiC
 • Thermomechanical, environment and thermochemical stability design considerations
 • Advanced EBC processing, testing and durability
 • NASA 2700-3000°F (1482-1650°C) EBC material systems
 • Current turbine and combustor EBC coating emphases – coating configurations

– Environmental barrier coating system development
 • NASA 2700°F EBC technologies

– Design tool and life prediction perspectives of EBC coated CMC components

– Summary and future directions
Fundamental Recession Issues of CMCs and EBCs

- **Recession of Si-based Ceramics**
 (a) Convective; (b) Convective with film-cooling
 - High temperature Capable and Low SiO₂ activity EBC system development

- **Advanced rig testing and modeling**
 More complex recession behavior of CMC and EBCs in test rigs simulated combustion flow and pressure conditions

Recession rate = const. \(V^{1/2} \frac{P_{(H₂O)}^2}{(P_{total})^{1/2}} \)

\[\text{SiO}_2 + 2\text{H}_2\text{O}(g) = \text{Si(OH)}_4(g) \]

(a)

(b)
Environmental Stability of Selected Environmental Barrier Coatings Demonstrated in NASA High Pressure Burner Rig

- EBC stability evaluated on SiC/SiC CMCs in high velocity, high pressure burner rig environments
- Focused on 2700-3000°F EBCs
- More stable turbine coatings developed under NASA programs for advanced engine applications

First generation EBC: CMC/Si/Mullite/BSAS

Stability and temperature capability improvements through coating composition and architecture innovations

High Pressure Burner Rig
Advanced EBC Developments

- Fundamental studies of environmental barrier coating materials and coating systems, stability, temperature limits and failure mechanisms
- Focus on high performance, high stability HfO$_2$ and ZrO$_2$-RE$_2$O$_3$-SiO$_2$/RE$_2$Si$_{2-x}$O$_{7-2x}$ environmental barrier systems
 - More advanced, multicomponent composition and composite EBC systems to improve the temperature capability, strength and toughness
 - Develop HfO$_2$-Si based + X (dopants) bond coat systems for 2700°F (1482°C) long-term applications
 - Develop *prime-reliant* 2700°F+ (1482°C) Rare Earth (RE)-Si + X (dopants) bond coat systems for advanced integrated EBC-CMC systems, improving bond coat temperature capability and durability
- Processing optimizations for improved composition control and process robustness
Advanced EBC Developments – Development Timelines

— Major development milestones:

• 1995-2000: BSAS/Mullite+BSAS/Si
• 2000-2004: RE$_2$Si$_2$O$_7$ or RE$_2$SiO$_5$/BSAS+Mullite/Si
• 2000-2004 - 3000°F EBC systems:
 Low conductivity (HfO$_2$-RE$_2$O$_3$-X Dopants) EBCs / RE$_2$Si$_2$O$_7$ or RE$_2$SiO$_5$ and/or BSAS+Mullite/Si and Oxide + Si bond coats;
 – HfO$_2$-Si based bond coats developed to overcome low melting point Si bond coat issues
 – Along with ceramic component demonstrations in rigs
• 2005-2011 - Turbine coating systems:
 Multi-component, HfO$_2$-Rare Earth Oxide-SiO$_2$/ multi-component Rare Earth Silicate/ HfO$_2$-Si systems
 – RE-HfO$_2$-X/Multicomponent RE-silicate / HfO$_2$-Si +X (doped)
• 2009 - present: Improved EBC compositions and processing; advanced 2700F RE-Si bond coats
 – e.g., (Gd,Yb,Y)Si bond coats and top coats
EBC Processing using Plasma Spray and EB-PVD

Triplex Pro (Oerlikon Metco) Processing and Advanced NASA EBCs – combustor liner demos

Directed Vapor EB-PVD Processed Advanced EBCs – Turbine Vane Airfoil Demos

HfO₂-Si bond coat

EBC Coated SiC/SiC CMC Inner and Outer Liner Demo

EBC coated SiC/SiC CMC Vane Airfoils Demo
Plasma Sprayed-Physical Vapor Deposition (PS-PVD) Processing of Environmental Barrier Coatings

— NASA PS-PVD and PS-TF coating processing using Sulzer (Oerlikon) newly developed technology

• High flexibility coating processing – PVD - splat coating processing at low pressure (at ~1 torr)
• High velocity vapor, non line-of-sight coating processing potentially suitable for complex-shape components
• Significant progress made in processing the advanced EBC and bond coats

100 kW power, 1 torr operation pressure

NASA PS-PVD Coater System

Processed coating systems

HfO₂-Si bond coat
NASA EBC Bond Coats for Airfoil and Combustor EBCs

- Advanced systems developed and to improve Technology Readiness Levels (TRL)
- Composition ranges studied mostly from 50 – 80 atomic% silicon
 - PVD-CVD processing, for composition downselects - also helping potentially develop a low cost CVD or laser CVD approach
 - Compositions initially downselected for selected EB-PVD and APS coating composition processing
 - Viable EB-PVD and APS systems downselected and tested; development new PVD-CVD approaches

<table>
<thead>
<tr>
<th>PVD-CVD</th>
<th>EB-PVD</th>
<th>APS*</th>
<th>FurnaceLaser/CVD/PVD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSi</td>
<td>HfO2-Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrSi+Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrSi+Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrSi+Ta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfSi + Si</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfSi + YSi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfSi+YSi+Si</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfSi + YbSi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdYbSi(Hf)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YYbGdSi(Hf)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Process and composition transitions

Hf-RESilicate
Used in ERA components as part of bond coat system

Hf-RE-Al-Silicate
Used also in ERA components as part of bond coat system

APS*: or plasma spray related processing methods

REHfSi
HfSi(O)
Furnace Cycle and Oxidation Test Results of Selected RESi and ZrSi Based Bond Coats

- Testing in Air at 1500°C, 1 hr cycles

- Multi-component RESiO+X series 2700°F+ EBC bond coat compositions and processing developed
- The 2700°F+ EBC bond coat systems showed promise for furnace cyclic durability and oxidation resistance at 1500°C tests
- Completed initial composition down-selects

An oxidation tested bond coat EBC specimen after 1500°C 100 h testing

Furnace cyclic testing in Air at 1500°C, 1 hr cycles

Oxidation kinetics studied using TGA in flowing O₂
Laser Rig Thermomechanical Creep - Fatigue Tests of Advanced 2700°F+ RESi Bond Coats and EBC Systems

- APS, PVD and EB-PVD processed 2700°F bond coats and EBCs on SiC/SiC CMC: focus on creep, fatigue high heat flux testing at temperatures of 1316-1482°C+ (2400-2700°F+) – Selected Examples

EB-PVD Rare Earth Silicate EBC/YbGdYSi bond coat on Hyper Therm CVI-MI

- $T_{\text{EBC surface}}$: 2850-3000°F (1600-1650°C)
- $T_{\text{cmc back}}$: ~2600°F (1426°C)

Creep and Fatigue Tests with CMAS

- Air Plasma Sprayed YSi+Hf-RESilicate EBC Bond Coat series on CVI-MI SiC/SiC 1400°C, at 10 ksi, 400 hr
- EB-PVD (Hf,Yb,Gd,Yb)$_2$Si$_2$O$_{7-x}$ EBC/GdYbSi bond coat on Rolls Royce CVI-MI SiC/SiC (with CMAS) 1537°C, 10ksi, 300 h fatigue (3 Hz, R=0.05)

Fatigue Tested

- PVD GdYSi coated on Hyper Them CVI-MI SiC/SiC 1316°C, 10ksi, 1000 h fatigue (3 Hz, R=0.05)
- PVD GdYbYSi coated on GE Prepreg SiC/SiC 1316°C, 15ksi, 1169 h fatigue (3 Hz, R=0.05)
- NASA 2700°F(1482°C)+ EBC System 188 on SA Tyrannohex SiC Composite, 1482°C, 15 ksi, 500hr

Laser rig testing
High Stability and CMAS Resistance Demonstrated by Advanced High Melting Point Coating, and Multi-Component Compositions

- Demonstrated Calcium-Magnesium-Alumino-Silicate (CMAS) resistance for NASA RESi system at 1500°C, 100 hr
- Silica-rich phase precipitation
- Still some rare earth elements leaching into the melts (low concentration ~9 mol%)
The Advanced EBCs on SiC/SiC CMC Turbine Airfoils Successfully Tested for Rig Durability in NASA High Pressure Burner Rig

- NASA advanced EBC coated turbine vane subcomponents tested in rig simulated engine environments (up to 240 m/s gas velocity, 10 atm), reaching TRL of 5
Thermal Gradient Fatigue-Creep Testing of Advanced Turbine Environmental Barrier Coating SiC/SiC CMCs

- Advanced environmental barrier coatings – Prepreg CMC systems demonstrated long-term EBC-CMC system creep rupture capability at stress level up to 20 ksi at $T_{EBC} = 2700\, ^\circ F$, $T_{CMC \, interface} \approx 2500\, ^\circ F$
- The HfO$_2$-Si based bond coat showed excellent durability in the long term creep tests

Advanced EBC coated CMC subelement testing and modeling

FEM modeling of EBC-CMC creep and thermal gradient and stress rupture interactions
Summary and Future Directions

- **Durable EBCs are critical to emerging SiC/SiC CMC component technologies**
 - The EBC development built on a solid foundation from past experience, evolved with the current state of the art compositions of higher temperature capabilities and stabilities
 - Multicomponent EBC oxide/silicates with higher stabilities
 - Improved strength and toughness
 - HfO$_2$-Si and RE-Si bond coats for realizing prime-reliant 2700°F EBC-designs
 - EBC processing and testing capabilities significantly improved, more advanced compositions designed and realized for complex turbine components
 - Develop rig EBC-CMC subelement simulated tests, helping develop coating property databases and validated life models, aiming at more robust EBC-CMC designs
 - Emphasized turbine airfoil EBC developments, demonstrated component EBC technologies in simulated engine environments of TRL 5, further maturing advanced coating technologies