Using C-band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

Corey G. Amiot¹, Lawrence D. Carey¹, William P. Roeder², Todd M. McNamara², Richard J. Blakeslee³

UAH ATS Dept.¹, USAF 45WS², NASA MSFC³
The USAF’s 45th Weather Squadron (45WS)

- Organization responsible for issuing warnings for hazardous weather events, including **convective wind events**, at CCAFS/KSC

- **Warning Thresholds:**
 1. Peak wind gust ≥ 35 knots
 2. Peak wind gust ≥ 50 knots

- **Desired lead times:**
 - 30 minutes for Threshold-1
 - 60 minutes for Threshold-2

- **Purpose:** identify **C-band radar** signatures to:
 1. Increase lead times and decrease false alarm ratios (FARs) for 45WS convective wind warnings
 2. Differentiate Threshold-1, Threshold-2, & null events

- **Motivation:**
 - Personnel Safety
 - Costs (facilities, space launches, payloads, etc.)
 - Higher FAR than desired
 - Lead times often not met

Sources: Roeder et al. (2009, 2014)
Wet Downbursts and Radar

- Some wet downburst ingredients (Srivastava 1987, Meischner et al. 1991):
 - Significant precipitation ice
 - Intense storm updraft
 - Melting over shallow layer
 - Melting vs. evaporation latent heat
 - Hydrometeor loading

- Reflectivity (Z_h) Core (Wakimoto and Bringi 1988, Tuttle et al. 1989)
 - Precipitation core (peak Z_h) descends to surface later in storm’s lifetime
 - Time Z_h core reaches surface = time of downburst
 - Peak Z_h may serve as indicator of downburst strength (Loconto 2006)

- Precipitation Ice Properties:
 - $Z_h \geq 29 – 33$ dBZ (Deierling et al. 2008)
 - 30 dBZ used in this study
 - Differential reflectivity (Z_{dr}) ≈ 0 dB
 - Spherical shape, tumbling, and/or lower dielectric (Herzegh and Jameson 1992)
 - Z_{dr} increases as falling ice melts
 - Often $3+$ dB below $0 \degree$C level (White 2015)

Image source: srh.noaa.gov
Wet Downburst Dual-Pol Signatures

- **“Z\text{dr} Column”** (Illingworth et al. 1987, Tuttle et al. 1989)
 - Region of positive Z_{dr} values extending above environmental 0 °C level
 - Lofting of liquid drops by storm’s updraft
 - Lofted drops freeze – leads to near-0 dB Z_{dr}
 - Results in lowered correlation coefficient (ρ_{hv})

- **“Z\text{dr} Hole” or “Z\text{dr} Trough”** (Wakimoto and Bringi 1988, Scharfenberg 2003)
 - Near-0 dB Z_{dr} region below 0 °C level
 - Descent of precipitation ice

- **Sharp increase in Z_{dr} over shallow layer** (Meischner et al. 1991)
 - Melting of small precipitation ice
 - Increased downward acceleration

Figure source: Mahale et al. (2016), Fig. 13
Data and Methodology

Data

- C-band radar data from 45WS radar (45WS-WSR)
- KXMR sounding data
- Cape Weather Information Network Display System (Cape WINDS) tower data
- 10 “downburst days” from May – September 2015
 - Includes 14 threshold events and 4 null events

Methodology

- Use IDL code to identify threshold-level wind gusts from Cape WINDS data
- Grid each radar volume scan using Py-ART; visualize using IDL
- Use Cape WINDS information and top-view radar images to identify downburst-producing storm cells
- Manually track cells back in time; use vertical cross sections of gridded radar data to analyze cells
- Use IDL codes to calculate environmental parameters
- Look for radar signatures common among threshold-level events
Results and Discussion

• Four main radar signatures identified so far:
 1) Peak height of 1 dB Z_{dr} contour above 0 °C level
 2) Peak height of co-located values of 30 dBZ Z_{h} and (approximately) 0 dB Z_{dr} above 0 °C level
 3) Peak Z_{h} value in storm cell
 4) Peak value of Z_{dr} in descending Z_{h} core 2.5 km below 0 °C level

• Much greater lead times offered in multicell events
 – Multiple updraft-downdraft cycles

• Other forcing mechanisms observed
 – E.g., sea breeze fronts, gust fronts, storm mergers

• Sources of future work
Signature #1 – 1 dB Z_{dr} Column Height

- Z_h (top), Z_{dr} (center), ρ_{hv} (bottom)
- East-West vertical cross sections
- Black line = 0 °C level
- Purple line = minimum θ_e level
- 35-knot downburst 48.5 min later

- Liquid hydrometeors lofted by updraft
- Freezing-melting, evaporation, loading all contribute to negative buoyancy

- Extended 1 km above 0 °C level in 85.71% (12 of 14) of threshold events and 100% (4 of 4) of null events
- Lead times: [11.50 min, 78.50 min]
 - Mean: 40.67 min; Median: 42.50 min
Signature #2 – Height of 30 dBZ Z_h and 0 dB Z_{dr}

- Z_h (top), Z_{dr} (center), ρ_{hv} (bottom)
- North-South vertical cross sections
- 42-knot downburst 50.5 min later
- Presence of precipitation ice aloft
- Melting during descent below 0 °C level enhances negative buoyancy
 - Especially important to downbursts in humid environments (Srivastava 1987)
- Co-location extended 3 km above 0 °C level in 92.86% (13 of 14) of threshold events and 100% (4 of 4) of null events
- Lead times: [3.50 min, 78.50 min]
 - Mean: 40.88 min; Median: 35.50 min
Signature #3 – Peak Z_h Value

- Z_h (top), Z_{dr} (center), ρ_{hv} (bottom)
- East-West vertical cross sections
- 35-knot downburst 24.5 min later

- Presence of large-sized and/or large concentrations of hydrometeors
- Availability for loading and large degree of melting (ice) and evaporation (liquid), all of which enhance negative buoyancy

- Peak Z_h of at least 50 dBZ in 92.86% (13 of 14) of threshold events and 75% (3 of 4) of null events
- Lead times: [11.50 min, 78.50 min]
 - Mean: 45.88 min; Median: 48.50 min
Signature #4 – Vertical Z_{dr} Gradient

- Z_h (top), Z_{dr} (center), ρ_{hv} (bottom)
- North-South vertical cross sections
- 51-knot downburst 16.5 min later

- Large degree of precipitation ice melting over shallow layer below 0 °C level
- Strong contribution to negative buoyancy; increased downward acceleration in downburst

- Z_{dr} increased to 3 dB in 2.5 km below 0 °C level in 92.86% (13 of 14) of threshold events and 100% (4 of 4) of null events
- Lead times: [1.50 min, 78.50 min]
 - Mean: 40.42 min; Median: 41.50 min
Summary and Future Work

Summary

- Four radar signatures identified in threshold-level downburst events:
 1. $1 \text{ dB } Z_{dr}$ column top at least 1 km above 0 °C level
 2. 30 dBZ Z_h co-located with 0 dB Z_{dr} extending 3+ km above 0 °C level
 3. Peak Z_h value of 50+ dBZ
 4. Increase in Z_{dr} in descending Z_h core to at least 3 dB within 2.5 km below 0 °C level
- Avg. lead time: 40 – 46 min

Future Work

- Include more events (both threshold and null)
 - Examine these four signatures
 - Explore other signatures, especially those unique to threshold-level events
- Examine environmental data in more detail
- Identify differences between 35-knot and 50-knot threshold events
- Algorithm development
Acknowledgements

• Work supported by *FUNDING INFO HERE*
• UAH Atmospheric Science (ATS) Department
 – Dr. Lawrence Carey
• USAF’s 45th Weather Squadron
 – Mr. William Roeder
 – Mr. Todd McNamara
• USAF’s 14th Weather Squadron
 – Mr. Jeffrey Zautner
• NASA Marshall Space Flight Center
 – Dr. Richard Blakeslee
• The first author would like to thank the following current and past members of UAH ATS / SWIRLL:
 – Sarah Stough, Retha Mecikalski, Alex Young, Chris Lisauckis, Bruno Medina, and Dustin Conrad
References

