Title:
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

Abstract:
Ozone (O\textsubscript{3}) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O\textsubscript{3} mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O\textsubscript{3}. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O\textsubscript{3} with high spatial resolution to be used as a near-real-time air quality product.

TEMPO O\textsubscript{3} retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O\textsubscript{3} profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O\textsubscript{3} climatology). It has been shown that satellite O\textsubscript{3} retrievals are sensitive to a priori O\textsubscript{3} profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O\textsubscript{3}) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O\textsubscript{3} algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

Authors

- Matthew S Johnson
 - NASA Ames Research Center
- John T Sullivan
 - University of Maryland Baltimore County
- Xiong Liu
 - Harvard-Smithsonian Center for Astrophysics
- Mike Newchurch
 - University of Alabama in Huntsville
- Shi Kuang
- Univ. of Alabama in Huntsville
 - Thomas J McGee
 - NASA Goddard Space Flight Center
 - Andrew O'Neil Langford
 - NOAA ESRL
 - Christoph J Senff
 - NOAA Boulder
 - Thierry Leblanc
 - California Institute of Technology
 - Timothy Berkoff
 - NASA Langley Research Center
 - Guillaume Gronoff
 - Science Systems and Applications, Inc. Hampton
 - Gao Chen
 - NASA Langley Research Ctr
 - Kevin B Strawbridge
 - Environment Canada Toronto