Matthew S. Johnson
NCTS #25415-17 AGU Fall Meeting 2016
Presentation Date: Thursday, 15 December 2016

Title:
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

Abstract:
Ozone (O$_3$) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O$_3$ mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O$_3$. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O$_3$ with high spatial resolution to be used as a near-real-time air quality product.

TEMPO O$_3$ retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O$_3$ profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O$_3$ climatology). It has been shown that satellite O$_3$ retrievals are sensitive to a priori O$_3$ profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O$_3$) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O$_3$ algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

Authors
Matthew S Johnson
- NASA Ames Research Center
John T Sullivan
- University of Maryland Baltimore County
Xiong Liu
- Harvard-Smithsonian Center for Astrophysics
Mike Newchurch
- University of Alabama in Huntsville
Shi Kuang
• Univ. of Alabama in Huntsville
 o Thomas J McGee
 • NASA Goddard Space Flight Center
 o Andrew O'Neil Langford
 • NOAA ESRL
 o Christoph J Senff
 • NOAA Boulder
 o Thierry Leblanc
 • California Institute of Technology
 o Timothy Berkoff
 • NASA Langley Research Center
 o Guillaume Gronoff
 • Science Systems and Applications, Inc. Hampton
 o Gao Chen
 • NASA Langley Research Ctr
 o Kevin B Strawbridge
 • Environment Canada Toronto