Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)

Eric Stoneking
Oscar Hsu
Gary Welter
Outline

• Introduction to WFIRST
• Fine Guidance Sensor
• Slew Laws
• Wheel Nullspace Control Law
• GNC Hardware Architecture
• Conclusion
Introduction to WFIRST

• Hubble-class Telescope
 – 2.4-m aperture
 – Jitter: 14 milliarsec RMS
 – Stability: 11.6 milliarcsec RMS over 180 sec exposures
 – Near infrared
 • Detectors ~100 Kelvin

• Science campaigns interleaved over 6-year mission
 – Supernova Survey: Cosmic Expansion
 – High Latitude Survey
 • Baryonic Acoustic Oscillation: Dark Energy
 • Weak Lensing Survey: Dark Matter
 – Microlensing Exoplanet Survey: Census
 – Exoplanet Coronagraphy: Characterization
Wide Field
M31 PHAT Survey

432 Hubble WFC3/IR pointings
Covered by 2 WFIRST Pointings

M31 PHAT Survey
432 Hubble WFC3/IR pointings
2 WFIRST pointings
Fine Guidance Sensor

- FGS is integral to Wide Field Instrument
 - One guide window per detector (18)
 - HAWAII-4RG 4Kx4K
 - GW data readout interleaved with science data readout
 - 0.17-sec GW sample time vs. 5-sec science frame
- Six waveband filters for imaging, plus a grism for spectroscopy
 - Filters affect perceived magnitude, PSF of guide stars
 - Grism spreads star image over ~800 pixels in one dimension
FGS Image Tracking

- Track up to 18 stars
 - One per detector
- Magnitude Range H(AB) 14.5 to 17
- Centroid computed using Discrete Fourier Transform (DFT)
 - Fit subwindow readings to sine, cosine
 - Phase angle yields centroid
 - Accurate, robust to noise
FGS Spectrum Tracking

- H(AB) 10 to 12
 - Limited by signal-to-noise
- 3-4 stars tracked
 - Limited by distribution on sky
- Fit pixel measurements to a curve
- 0.25-sec sample time
- Simulations show centroiding to 100 milliarcsec in dispersed direction
FGS Acquisition

• Survey operations require rapid slew and acquisition of FGS at each target
• During slew, attitude determination based on star trackers, gyros
• Handoff from ST-IRU to FGS guidance uses a dedicated Settle mode
 – Acquisition guide windows are larger (64x64 pixels) to envelope expected ST-based attitude errors
 – Each guide window searches for candidate guide stars to match uploaded pattern
 – FGS takes over pointing guidance once enough (~4) stars are tracked
 • All guide windows reduced to tracking size (16x16 pixels)
 • Any guide windows failing to match the pattern restart search using improved offsets
 – Once locked, guide windows move if needed to follow guide stars
 • Allows acquisition in parallel with settling of residual slew motion
• Shaped slew profiles are used to minimize excitation of structural modes
 – “Rise time” of 1-2 sec to avoid 1-Hz mode
• Most slews are torque-limited
 – Rate-limited above ~6.5 deg
• WFIRST has a Field of Regard defined by a Sun Constraint
 – Telescope boresight axis always kept between 54 deg and 126 deg from Sun
• Telescope Boresight trace in Red
 – Observatory +X Axis
• Sun is “pole” in this view
• Slew endpoints are within Field of Regard, but +X axis travels through Sun keep-out zone
• Euler Angle Sequence introduced, based on FoR
• Slew is monotonic in each Euler angle
 – If both endpoints are in FoR, then every point along slew is too
• All three ‘single-axis’ slews performed concurrently
 – Two shorter slews scaled in time to match longest slew duration
Wheel Nullspace Control

• Four wheels provide three axes of control, plus one null-torque degree of freedom
• This DOF is used for:
 – 1) Balance the work to avoid spinning one wheel up more than its share
 • Conserves torque authority, prolongs interval between momentum unloads
 – 2) Keep wheel speeds separated by 1 Hz
 • Avoids reinforcing undesirable excitation of structural resonances
 – 3) Push each wheel through its zero-speed crossing
 • Minimizes perturbation to pointing stability
• It can’t all be done at once with only one DOF, but:
 – Balance, separation are naturally opposed to each other
 – Zero-speed crossings are episodic
 – So a weighted multi-term control law finds a happy medium
Wheel Momenta

- Initial speed separation must be done by targeted momentum unload
 - Some wheel speed crossings are unavoidable, but not long-term
- Solar radiation pressure causes steady ramp
- As each wheel approaches zero, it is pushed through
 - This perturbs other wheel speeds
 - Zero-crossings spaced so only one wheel is involved at a time
GNC Hardware Architecture

• GNC architecture is single-fault tolerant

• Sensors:
 – Coarse sun sensors (4-pi steradian coverage)
 – Inertial Reference Unit
 • Angle random walk is performance driver for larger slews
 – Star sensors (3)
 – Fine Guidance Sensor (integral with Wide-Field Instrument)

• Actuators
 – Reaction Wheels (now considering 6x)
 – Thrusters
 • 8x 22-N class for insertion, midcourse maneuvers
 • 16x 5-N class for stationkeeping, momentum unload

Thruster Layout showing thrust axes, plume avoidance cones
• WFIRST is a unique combination of precision pointing and agility
 – FGS integral with Wide-Field Instrument
 – Rapid and robust handoff from star tracker-gyro to FGS
 – Avoid structural excitation
 • Shaped slews
 • Wheel nullspace management

• Hardware architecture definition is in work
 – Currently in Phase A, requirements definition
 • Components have not been selected
 • Basic architecture and requirements are outlined
 – Late-breaking: Moving to 6-wheel architecture from 4 wheels
 • Need high torque for microlensing slews