Effects of ionizing radiation on murine gene expression in skin and bone

Masahiro Terada1,2, Ann-Sofie Schreurs1,3, Yasaman Shirazi-Fard1,4, Joshua Alwood5, Candice Tahimic1,4, Marianne B. Sowa6 and Ruth K. Globus1

1Space Biosciences Division, NASA Ames Research Center, 2Universities Space Research Association, 3NASA Academic Mission Services, 4Wyle Laboratories

ABSTRACT

Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The potential for exposure to space radiation to contribute to loss of bone mineral density in astronauts is not yet understood. Sustained changes to bone mass have a relatively long latency for development, however skin is a target organ for changes in skin gene expression. In this study, we evaluated gene expression changes in skin in response to ionizing radiation (IR) by using quantitative real-time PCR (qPCR) in both control and IR-exposed mouse skin. Skin from mouse femora and tibiae was collected 1 day and 11 days post-IR. The analysis showed a significantly increased expression of FGF18 in mouse skin post-IR. The percentage of FGF18+ hair follicles decreased at one day post-IR and returned to basal levels at 11 days post-IR. These changes in gene expression occurred early after IR.

INTRODUCTION

Animal:
- Male C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME), 16 weeks of age
- Experimental group:
 - Control (Cont)
 - IR: 8.78x10^2 Gy at 10 MeV/n (Cont: n=5/group)

METHODS

Gene expression in skin

Gene expression in bone: MCP-1

PILOT RESULTS

Gene expression in bone (femur)

Correlation plot

CONCLUSIONS

FGF18 expression in skin and bone

Acknowledgements

This work is supported by the National Space Biomedical Research Institute through NCC 9-58, and Space Biology/NASA Space Biology Postdoctoral Fellowship awards to Dr. Terada and Dr. Schreurs.

REFERENCES