Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

INTRODUCTION
Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum:
- Fifth generation mobile architecture (5G): 28, 38, 39, 64–71 GHz
- Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz
Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform.

DESIGN
Compared to previous work (<18 GHz), the primary challenge at 70 GHz is realizing a wide range of impedances in the balun, while maintaining fabrication tolerances, and avoiding spurious resonances. The array elements are designed co-planar to the fabrication panel, such that the complete array can be fabricated as a single PCB. The coupled dipoles are paired with an integrated balun, implemented using vias through the panel. Elements are fed from an unbalanced transmission line, beneath the groundplane.

SIMULATION
The impact of the groundplane and integrated balun is shown, demonstrating how the balun serves to increase bandwidth as an additional matching stage:
- Dipole & Ground plane
- Adding short circuit
- Adding open circuit

SCALABILITY
The array is designed within the fabrication limitations, and can be scaled to higher frequencies with only minor modifications. Below, we demonstrate such a design to include Ka-band, 76 GHz and 86 GHz satellite backhaul bands:
- 26–90 GHz with VSWR < 2 (Broadside and E-plane)
- Compatible with PCB fabrication
- Offset feed necessary due to minimum via pitch, results in increased cross-pol.

DE-EMBEDDED MEASUREMENTS
At these frequencies, a test fixture is required to interface with the VNA. However, this fixture is large and significantly distorts the characterization of the antenna. Thus an isolated fixture is characterized and correspondingly removed from the embedded measurement.

CONCLUSIONS
UWB phased arrays are needed to consolidate future communications applications on small platforms. Mass-market adoption requires low-cost PCB fabrication.

We demonstrated an array design simultaneously supporting all six mm-W 5G and ISM bands, which is compatible with PCB processes. This array is currently being fabricated; gain pattern and return loss measurements will be conducted.