Cooling of Electric Motors Used for Propulsion on SCEPTOR

Robert Christie
NASA Glenn Research Center, Cleveland, OH, 44135

Arthur Dubois
Joby Aviation, Inc., Santa Cruz, CA, 95060

and

Joseph Derlaga
NASA Langley Research Center, Hampton, VA, 23681

Work being done by Joby Aviation is for a NASA Armstrong Flight Research Center Phase III SBIR with Empirical Aerospace, Inc. under NASA contract number NND15SA42C.
Benefits of Electric Power

- Reduced energy consumption
- Lower emissions
- Less noise

SCEPTOR
Scalable Convergent Electric Propulsion Technology Operations Research
- Traction motors
 - Permanent magnet
 - Synchronous
 - High torque at low rotational speeds
 - High power density
 - High concentration of heat

SCEPTOR Cruise Motor
Typical permanent magnet synchronous motor

In-Runner is shown but final design is an Out-Runner
Motor Configurations

- Annular inlet
 - Very compatible with PM motors
 - Provides cooling where needed
 - No need for complicated ducting
 - Leads to a larger motor diameter which is beneficial for motor torque
Extreme high field temperature

Typical cold day at 15,000 ft ASL

Reduced for ProtoQual

Range for ESS
At surface use +45°C (113°F)

SCEPTOR Environment Temperature Operating Range at Altitude superimposed on measured temperatures at EAFB

Designing for 15,000 ft ASL per DO-160G Category A-1

Maximum operating altitude 8,000 ft ASL
Hardware Configurations for Full-Scale Test of NACA Cowlings
Lessons learned from NACA

- Shape #7 with spinner #10 was preferred
- Small diameter inlets, #3 & #9, were not acceptable
 - reduced turbulence on the front face of the engine
- Preferred nose shapes can be found in NACA report 662
- Because the flow velocity is so low inside of the cowling, the geometry of the internal flow path is not significant
 - True when motor has a high (3X) flow conductance relative to the inlet and outlet. This is not currently the case for SCEPTOR
- Fans/blowers provide little benefit for in flight cooling
- Propeller slip stream in only beneficial on the ground
- Variable geometry skirts proved to be inefficient
- Cooling drag is not just related to the geometry change: It includes the work done to pump the air through the motor, i.e. it’s a function of flow rate
Effect of prop wash on heat transfer coefficients

✓ Assumed propeller induced turbulence would increase heat transfer coefficients
✓ Holmes, Obara & Yip reported “propeller slipstream showed little if any apparent effect of the slip stream.”
✓ Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller
Average: 185 W/m2K
Empirical flat plate: 135 W/m2K
Lumped Parameter Model

- Spreadsheet to perform quick parametric studies
- Empirical equations for heat transfer coefficients
- ‘Goal seek’ method to find solution to simultaneous equations
- Correlated with conjugated heat transfer & CFD model
- Parameters varied to see effect on core coil temperature, a.k.a. stator

Early ‘In and Out Runner’ Configuration
Lumped Parameter Model
‘In & Out Runner’ Configuration
Lumped Parameter Model

Results

✓ Increasing pressure head using fans or up-draft had little benefit

✓ Adding cooling area was most effective (*shown in plot*)

✓ Analysis of radial gap height showed 0.002m was desirable (*shown in plot*)

✓ Air flow gap between coils should be at least 0.001m wide

✓ Provided independent validation & verification and helped substantiate that the proper geometric dimensions, boundary conditions, and power levels were being used
Intra-Coil Core Cooling
Stator Cooling Fin Concepts
Out Runner Motor Cooling

<table>
<thead>
<tr>
<th>Passage</th>
<th>% of Air Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor/Stator Gap</td>
<td>17%</td>
</tr>
<tr>
<td>Stator Fins</td>
<td>75%</td>
</tr>
<tr>
<td>Coil Gaps</td>
<td>3%</td>
</tr>
<tr>
<td>Fin Tip Gap</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passage</th>
<th>% of Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor/Stator Gap</td>
<td>31%</td>
</tr>
<tr>
<td>Stator Fins</td>
<td>48%</td>
</tr>
<tr>
<td>Coil Gaps</td>
<td>8%</td>
</tr>
<tr>
<td>Fin Tip Gap</td>
<td>-</td>
</tr>
<tr>
<td>External</td>
<td>14%</td>
</tr>
</tbody>
</table>

- Exterior of Nacelle (rotating)
- Permanent Magnets (rotating)
- Electro-magnetic Coils (stationary)
- Stator Cooling Fins (stationary)
Lumped Parameter Model
‘Out Runner’ Configuration

- **Inlet**
- **Exhaust**
 - Weight average mass flow to obtain exhaust temperature

Components:**
- **External Environment**
- **Outer Rotating Permanent Magnets**
- **Stationary Electromagnetic Core**
- **Cooling Fins**

Notations:**
- Radial Gap Between Outer Rotor and Stator
- h_cA
- $0.3kW$
- $3kW$

Diagram Details:
- The diagram illustrates the flow through the components and connections between them.
Out-Runner Motor-Cooling

Observations:

✅ Adding fins to the ID of stator greatly increased the cooling area and air flow

✅ The fins provide 48% of the cooling

✅ The fins have an excess of air flow

 ➢ Causes lower exit temperatures, which allow the exit air to be used for inverter cooling

 ➢ Makes design robust, i.e. insensitive to moderate changes in airflow

➢ Pressure drop at inlet and outlet are of same magnitude as across the motor

Dual Inverters
Conclusions:

- Motor is adequately cooled for inflight operations
- A finned heat sink on the electromagnetic core is the most effective method to achieve adequate cooling
- The design is robust: Moderate changes in airflow will have minor effect on cooling
- Simple 1D models are very valuable
 - Provide insight into the what changes are most influential
 - Quickly do parametric studies
 - Perform independent verification
 - Discover errors or misunderstandings
- Details about the current design and a more in depth analysis will be presented by Arthur Dubois of Joby Aviation