Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

Jeffrey I. Eldridge, Vikram Shyam, Adam C. Wroblewski, and Dongming Zhu
NASA Glenn Research Center, Cleveland, OH

Michael D. Cuy
Vantage Partners, Cleveland, OH

Douglas E. Wolfe
Penn State University, University Park, PA

Aviation 2016
Washington, D.C.
June 13-17, 2016
Motivation for Evaluating Combined TBC + Air-Film Cooling

- TBC and air film cooling effectiveness usually studied separately.
- TBC and air film cooling contributions to cooling effectiveness are interdependent and are not simply additive.
- Combined cooling effectiveness must be measured to achieve optimum balance between TBC thermal protection and air film cooling.
Heat Transfer Through Turbine Blade/Vane

Mainstream Gas Flow

\[T_{\text{mainstream}} \]

Coolant gas

\[T_{\text{co}} \]

Cooling effectiveness:

\[\Phi = \frac{T_{\text{mainstream}} - T_{\text{metal}}}{\Delta T_{\text{total}}} = \frac{1}{h_{\text{conv}}} + \frac{d_{\text{TBC}}}{k_{\text{TBC}}} + \frac{d_{\text{metal}}}{k_{\text{metal}}} + \frac{1}{h_{\text{backside}}} \]

- Air film cooling greatly reduces effective \(h_{\text{conv}} \) and therefore greatly reduces \(\Phi_{\text{TBC}} \)
- Air film cooling greatly reduces \(q \) and therefore \(\Delta T_{\text{TBC}} \)

- Experimental measurements of combined TBC + air film cooling effectiveness are needed to evaluate TBC/air-film-cooling tradeoffs (Air film cooling carries significant penalty for engine efficiency).
Objectives

• Experimentally map effectiveness of air film cooling on TBC-coated surfaces.

• Examine changes in cooling effectiveness as a function of:
 – Mainstream hot gas temperature
 – Blowing ratio (cooling air flow)

• Examine interplay between air film cooling, backside impingement cooling, and through-hole convective cooling for TBC-coated substrate.
Approach

- Perform measurements in NASA GRC Mach 0.3 burner rig.
 - Vary flame temperature and blowing ratio.
- Perform measurements on TBC-coated superalloy plate with scaled up simple cooling hole geometry.
 - Initial testing of actual vane component did not produce effective air film cooling.

- Perform 2D temperature mapping using Cr-doped GdAlO$_3$ (Cr:GAP) phosphor thermometry.
 - GdAlO$_3$ exhibits orthorhombic perovskite crystal structure: gadolinium aluminum perovskite (GAP).
 - Ultrabright Cr:GAP luminescence emission enables surface temperature mapping using luminescence lifetime imaging by simply broadening the excitation laser beam to cover the region of interest.
 - Unbiased by emissivity changes and reflected radiation. ✓
 - Only applicable to steady state temperatures. ✗
Cooling Hole Plate Geometry

Side view:
- 6.35 mm
- 30°

Top view:
- 76.4 mm
- 3.175 mm
- 9.525 mm
- 50.8 mm
- 152.4 mm

Coating layers:
- 6.35 mm
- 125 μm
- 200 μm
- 30 μm

Materials:
- YSZ
- MCrAlY
- Hastelloy X
- Cr:GAP

EB-PVD
Cooling Effectiveness Measurements

Conventional Air Film Cooling Effectiveness Test

- Uniform mainstream flow (velocity & temperature)
- Typical surface temperatures: < 100°C
- Measure adiabatic air film cooling effectiveness, \(\eta \)
 \[\eta = \frac{T_{\text{mainstream}} - T_{\text{adiabatic surface}}}{T_{\text{mainstream}} - T_{\text{coolant exit}}} \]
- \(\eta \) is a fundamental characterization of pure air film cooling effectiveness
- Measure \(\eta \) as a function of blowing ratio, \(M \)
 \[M = \frac{\rho_{\text{coolant}} v_{\text{coolant}}}{\rho_{\text{mainstream}} v_{\text{mainstream}}} \]

Burner Rig Air Film Cooling Effectiveness Test

- Divergent mainstream flow
- Typical temperatures: 600-1100°C
- Measure overall surface cooling effectiveness, \(\eta' \)
 \[\eta' = \frac{T_{\text{uncooled}} - T_{\text{cooled}}}{T_{\text{uncooled}} - T_{\text{coolant enter}}} \]
- \(\eta' \) is a nonfundamental but realistic characterization of combined surface cooling effects
- Measure \(\eta' \) as a function of \(M' \)
 \[M' = \frac{\rho_{\text{coolant}} v_{\text{coolant}}}{\rho_{\text{mainstream}} v_{\text{mainstream}}^{\text{max}}} \]
2D Temperature Mapping by Luminescence Lifetime Imaging

- Image stack collection
- Background subtraction
- Data filtering
- Pixel by pixel lifetime analysis
- Produce temperature and cooling effectiveness maps from decay time maps
Luminescence Lifetime Image Stack

n images
$t_0 =$ start of 1st exposure
$\Delta t =$ frame interval
$t_n = (n-1)\Delta t + t_0$
 = delay time after laser pulse for
nth image in stack

Typical values
$n = 64$
$t_0 = 0.1 \mu s$
$\Delta t = 0.25$ to $100 \mu s$
Frame interval = exposure = Δt
Laser pulse frequency = 20 Hz
1 exposure/laser pulse (ICCD)
2D Temperature Maps from Luminescence Lifetime Imaging

- **Multi-step procedure:**
 - Step 1: Remove radiation background from each frame collected.
 - Step 2: Assemble stack of background-corrected time-gated images over sequence of incremented delay times.
 - Step 3: Perform pre-fit filtering.
Pre-Fit Data Filtering
Criteria for removing pixels unsuitable for temperature determination

Minimum absolute threshold
\[I_{ij}(\text{frame 1}) < 2200 \]

Maximum final frame relative threshold
\[I_{ij}(\text{last frame}) > 10\% \times I_{ij}(\text{first frame}) \]

Minimum number of frames in fitting interval
\[10\% \times I_{ij}(\text{first frame}) < I_{ij}(\text{frame n}) < 90\% \times I_{ij}(\text{first frame}) \]
Number of frames < 6

Insufficient signal
Too cold: need to extend to longer delay times after laser pulse
Too hot: need smaller increments of delay time

Post-fit temperature map

Example of better delay time range & increments
2D Temperature Maps from Luminescence Lifetime Imaging

- Step 4: Fit luminescence decay curve at each pixel to produce decay time map. Dynamic fitting window spans region between 60% and 10% of initial intensity. (Matlab routine).

- Step 5: Use calibration data to convert decay time map to temperature map (Matlab routine).

\[\tau = \tau_R e^{-\Delta E / kT} \]

Find \(T \) that gives know \(\tau \) where \(\tau = \tau_R e^{-\Delta E / kT} \)

Temperature Map

Temperature Line Scan

95% Confidence Interval
Burning particles crossing field of view produce temperature map artifacts, can be mitigated by outlier removal.

Luminous flame streaks produce local temperature errors ~20°C too low.

Decay time temperature maps include outlier pixels. Includes outlier pixels. Excludes outlier pixels. 95% confidence interval includes outlier pixels.

T_{\text{included}} - T_{\text{excluded}}
$I_{ij}(t_n)$ is intensity of pixel ij in frame n of stack,

$t_n = n \Delta t + t_0$ where Δt is frame interval and t_0 is 1st frame time;

$I_{ij}(t_n)$ is an outlier when

$$\left| I_{ij}(t_n) - I_{ij}^{fit}(t_n) \right| > 1.5\sigma \left[I_{ij}(t_n) - I_{ij}^{fit}(t_n) \right]$$
Air Film Cooling of TBC-Coated Surface

Results

• Examine changes in cooling effectiveness as a function of:
 – Mainstream hot gas temperatures: 1390, 1604, and 1722°C
 – Blowing ratio: M' = 0 to 1.1
Burner Rig 2D Temperature Maps

\[T_{\text{mainstream}} = 1390^\circ C \]

Decay time temperature maps

- \(M' = 0.134 \)
- \(M' = 0.321 \)
- \(M' = 0.535 \)
- \(M' = 0.803 \)
- \(M' = 0.936 \)

95\% confidence interval

Temperature Line Scan

Vortex-induced hot streaks

Distance (mm)

Temperature (°C)
Burner Rig 2D Cooling Effectiveness Maps

\[T_{\text{mainstream}} = 1390^\circ \text{C} \]

- \(M' = 0.134 \)
- \(M' = 0.214 \)
- \(M' = 0.321 \)
- \(M' = 0.428 \)
- \(M' = 0.535 \)
- \(M' = 0.669 \)
- \(M' = 0.803 \)
- \(M' = 0.936 \)

Initially increasing air jet film cooling effectiveness

Rapidly increasing through-hole convection cooling effectiveness

Diminishing air film cooling effectiveness with air jet lift-off

Appearance of vortex-induced hot streaks

Cooling Effectiveness Line Scan

Vortex-induced hot streaks

Upstream through-hole convective cooling

\(\eta' \)

Distance (mm)

1 cm
Burner Rig 2D Temperature Maps

$T_{\text{mainstream}} = 1604^\circ\text{C}$

Decay time temperature maps

$M' = 0.151$

$M' = 0.362$

$M' = 0.604$

$M' = 0.906$

$M' = 1.057$

95% confidence interval

photos
Burner Rig 2D Cooling Effectiveness Maps

$T_{\text{mainstream}} = 1604^\circ\text{C}$

- $M' = 0.151$
- $M' = 0.242$
- $M' = 0.362$
- $M' = 0.483$
- $M' = 0.604$
- $M' = 0.755$
- $M' = 0.906$
- $M' = 1.057$

Initially increasing air jet film cooling effectiveness

Rapidly increasing through-hole convection cooling effectiveness

Diminishing air film cooling effectiveness with air jet lift-off

Appearance of vortex-induced hot streaks

Upstream through-hole convective cooling
Burner Rig 2D Temperature Maps

\[T_{\text{mainstream}} = 1722^\circ \text{C} \]

Decay time temperature maps

\[M' = 0.151 \quad M' = 0.385 \quad M' = 0.642 \quad M' = 0.963 \quad M' = 1.123 \]

95\% confidence interval

photos
Burner Rig 2D Cooling Effectiveness Maps

\[T_{\text{mainstream}} = 1722°C \]

- \(M' = 0.160 \)
- \(M' = 0.257 \)
- \(M' = 0.385 \)
- \(M' = 0.514 \)
- \(M' = 0.642 \)
- \(M' = 0.802 \)
- \(M' = 0.963 \)
- \(M' = 1.123 \)

Initially increasing air jet film cooling effectiveness

Rapidly increasing through-hole convection cooling effectiveness

Diminishing air film cooling effectiveness with air jet lift-off

Appearance of vortex-induced hot streaks

Deposition/fouling region

Signal attenuation due to flame deposit
• **Air film cooling**
 – Effectiveness initially increases with increasing M, then diminishes with jet lift-off.
 – Vortex-induced hot streaks appear near cooling holes. May be worse on TBC-coated surface.

• **Through-hole convective cooling**
 – Effectiveness increases rapidly at high M.
 – Not observed in conventional air film cooling measurements.

• **Backside impingement cooling**
 – Slowly increases with increasing M.

• **Cooling effectiveness shows similar dependence on blowing ratio over wide range of mainstream gas temperature.**

• **Effect of TBC on other cooling mechanisms**
 – Will decrease air film cooling effectiveness.
 – Will increase through hole convective cooling effectiveness – may be useful for showerhead cooling.
Mainstream Gas Flow

Surface cooling effectiveness from Cr:GAP layer:

\[\eta' = \frac{T_{\text{surface uncooled}} - T_{\text{surface cooled}}}{T_{\text{coolant enter uncooled}} - T_{\text{coolant enter}}} \]

Metal cooling effectiveness from doped YSZ layer:

\[\Phi' = \frac{T_{\text{metal uncooled}} - T_{\text{metal cooled}}}{T_{\text{coolant enter uncooled}} - T_{\text{coolant enter}}} \]
Conclusions

• Successfully demonstrated 2D temperature mapping by Cr:GAP phosphor thermometry with high resolution (temperature, spatial, but not temporal) in presence of strong background radiation associated with combustor burner flame.

• Can be used as new tool for studying/optimizing non-additive interplay of cooling mechanisms for TBC-coated components.
 – TBC
 – Air film
 – Through-hole convection
 – Backside impingement

Acknowledgment

• Funding from NASA Transformative Tools & Technologies (TTT) Project under the Transformative Aeronautics Concepts Program (TACP)