Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

John M. Carson III1,3,∗, Farzin Amzajerdian2,†, Carl R. Seubert3,‡, Carolina I. Restrepo1,§

1NASA Johnson Space Center (JSC), 2NASA Langley Research Center (LaRC), 3Jet Propulsion Laboratory (JPL), California Institute of Technology,

A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

I. Introduction

Introduction will discuss the NASA need for Precision Landing and Hazard Avoidance (PL&HA) technologies for future, prioritized solar-system destinations (robotic and human missions), as well as provide an overview for the COBALT project and how it fits within the NASA PL&HA technology development roadmap.

Figure 1. GN&C landing system capabilities enabled with PL&HA technologies.

∗COBALT PM, JSC-IPA, AIAA Associate Fellow. †NDL Chief Scientist, LaRC Team Lead, AIAA Member. ‡COBALT SE&I, JPL Team Lead, AIAA Senior Member. §COBALT Deputy PM.
II. COBALT Platform Overview

A high-level overview of the hardware components within the COBALT platform.

![Figure 2. CAD models of COBALT payload (left) and Xodiac vehicle (right).](image)

III. Flight Campaign Concept of Operations

Overview of the flight campaign ConOps and the Xodiac vehicle.

![Figure 3. Images of the fully-integrated COBALT payload hardware](image)
IV. Pre-Campaign Ground Tests

Discussion of some of the pre-campaign ground testing that occurred in preparation for integration of the COBALT platform onto Xodiac.

V. Open-Loop COBALT Performance

Overview of the COBALT performance, navigation filter highlights, and data analysis.

VI. Revisions and Steps to Closed-Loop

Discussion of post-test revisions in work and plans for closed-loop flight test campaign
Acknowledgments

We want to acknowledge the large team of engineers across NASA at JSC, JPL and LaRC who are supporting the development, implementation and testing of COBALT. We also want to acknowledge the team at Masten that is working diligently to prepare the Xodiac vehicle for the COBALT flight campaigns. Additionally, the authors acknowledge the prior JPL ADAPT project team whose work the COBALT team is leveraging. The COBALT Project derives funding and support from multiple NASA directorates and programs, including the Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Program (through the Lander Technologies Project), the Space Technology Mission Directorate (STMD) Game Changing Development (GCD) Program, and the STMD Flight Opportunities (FO) Program. The LVS TRN software within COBALT has been developed through multi-directorate contributions, as well, including the NASA Science Mission Directorate (SMD) and STMD. As previously stated, the STMD-FO Program is provide the funding and coordination of the COBALT flight campaigns onboard the Masten Xodiac vehicle. The work described herein is being performed within NASA JSC, JPL and LaRC, as well as within Masten Space Systems. The COBALT work at the Jet Propulsion Laboratory, California Institute of Technology, is being performed under contract with the National Aeronautics and Space Administration (Government sponsorship acknowledged).

References


