The Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

Presented by
Haisam Ido
Principal Systems Engineer
haisam.ido@nasa.gov

NASA Goddard Space Flight Center - Space Science Mission Operations
KBRwyle Technology Inc.
Objective of Presentation

• What is Space Science Mission Operations (SSMO)?
• What is the vMMOC?
• Available vMMOC Services
• “Looking Beyond the Horizon”
What is Space Science Mission Operations (SSMO)?
What is Space Science Mission Operations (SSMO)?

- **SSMO** provides project oversight for 19 NASA *space science* missions for which **GSFC** is responsible.

- **SSMO** has a diverse set of missions:
 - heritage/launch date
 - orbit regime
 - spacecraft bus type
 - mission profile
 - communication networks
 - In-house and Out of House Mission Operations Centers (MOCs)
SSMO Spacecraft in Operations

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch Year</th>
<th>MOC Location</th>
<th>Science Type</th>
<th># s/c</th>
<th>Orbit Regime</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>1997</td>
<td>GSFC</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>N/A</td>
</tr>
<tr>
<td>AIM</td>
<td>2007</td>
<td>LASP</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>31304</td>
</tr>
<tr>
<td>ARTEMIS*</td>
<td>2007</td>
<td>UC Berkeley</td>
<td>Heliophysics</td>
<td>2</td>
<td>P1, lunar orbit; P2, Lunar Lagrange Point 1</td>
<td>30581, 30582</td>
</tr>
<tr>
<td>Fermi</td>
<td>2008</td>
<td>GSFC</td>
<td>Astrophysics</td>
<td>1</td>
<td>LEO</td>
<td>33053</td>
</tr>
<tr>
<td>IBEX</td>
<td>2008</td>
<td>Orbital</td>
<td>Heliophysics</td>
<td>1</td>
<td>HEO (T = 9 days)</td>
<td>33401</td>
</tr>
<tr>
<td>IRIS</td>
<td>2013</td>
<td>ARC</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td></td>
</tr>
<tr>
<td>LRO</td>
<td>2009</td>
<td>GSFC</td>
<td>Planetary (Lunar)</td>
<td>1</td>
<td>Lunar Orbit</td>
<td>N/A</td>
</tr>
<tr>
<td>MAVEN</td>
<td>2013</td>
<td>LM - Denver</td>
<td>Planetary</td>
<td>1</td>
<td>Mars Orbit</td>
<td>N/A</td>
</tr>
<tr>
<td>MMS</td>
<td>2015</td>
<td>GSFC</td>
<td>Heliophysics</td>
<td>4</td>
<td>HEO</td>
<td>40482, 40483, 40484, 40485</td>
</tr>
<tr>
<td>OSIRIS-REx</td>
<td>2016</td>
<td>LM-Denver</td>
<td>Planetary</td>
<td>1</td>
<td>Heliocentric</td>
<td>N/A</td>
</tr>
<tr>
<td>Van Allen Probes (R BSP)</td>
<td>2012</td>
<td>APL</td>
<td>Heliophysics</td>
<td>2</td>
<td>HEO</td>
<td>38752, 38753</td>
</tr>
<tr>
<td>RHESSI</td>
<td>2002</td>
<td>UC Berkeley</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>27370</td>
</tr>
<tr>
<td>SDO</td>
<td>2010</td>
<td>GSFC</td>
<td>Heliophysics</td>
<td>1</td>
<td>GEO</td>
<td>36395</td>
</tr>
<tr>
<td>SOHO**</td>
<td>1995</td>
<td>GSFC</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>n/a</td>
</tr>
<tr>
<td>STEREO</td>
<td>2006</td>
<td>APL</td>
<td>Heliophysics</td>
<td>2</td>
<td>Heliocentric</td>
<td>n/a</td>
</tr>
<tr>
<td>Swift</td>
<td>2004</td>
<td>Penn State</td>
<td>Astrophysics</td>
<td>1</td>
<td>LEO</td>
<td>28485</td>
</tr>
<tr>
<td>THEMIS</td>
<td>2007</td>
<td>UC Berkeley</td>
<td>Heliophysics</td>
<td>3</td>
<td>HEO</td>
<td>305880, 30584, 30585</td>
</tr>
<tr>
<td>TIMED</td>
<td>2001</td>
<td>APL</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>26998</td>
</tr>
<tr>
<td>WIND</td>
<td>1994</td>
<td>GSFC</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>n/a</td>
</tr>
</tbody>
</table>
What is the vMMOC?

What is the virtualized Multi-Mission Operations Center (vMMOC)?

The vMMOC’s Objectives are ...

- Rapid and efficient provisioning and orchestration of spacecraft mission operation environments.

- Break the barrier to mission operations and enhance accessibility
What is the vMMOC?

- Multiple-missions Operated from one center
- Local virtualized infrastructure
- *Access* to a secure public cloud computing infrastructure
- Situational Awareness Dashboard (a SaaS)
- Telemetry as a Service (TaaS)
 - Soon to be *Telemetry, and Tracking as a Service* (TTaaS)
- Navigation as a Service (NaaS)
vMMOC’s High Level Infrastructure

- Restricted Mission Network
- Open Mission Network
- Closed Mission Network
- Internet
- Instrument User Community
- CNE – NASA Network

Exchange

Common Services

ACE
Fermi
LRO
MMS (backup)
OSIRIS-REx (backup)

SDO
SOHO
SWIFT
Wind

Fermi
ACE

LRO

MMS (backup)

OSIRIS-REx (backup)

Common Services
What is the vMMOC?

- **Shared:**
 - Infrastructure
 - Product formats
 - Networking interfaces
 - Workflows & Procedures
 - Security implementations
 - Hardware and software
 - Core staff
 - Lessons-learned
 - Culture
What is the vMMOC?

Private virtualized infrastructure

GSFC - SSMO
- VMware
- Storage
- PMs
- VMs

Public Cloud Computing (secured)

AWS GovCloud
- Instances
- Distributed Object Stores

Data Producers & Consumers

Ground Systems Architectures Workshop (GSAW) - 2017; Los Angeles, CA March 13-16, 2017; Session: Virtualization and Cloud
Situational Awareness Dashboard

Break the barrier to data access
• Provide local and remote users an integrated, situational awareness dashboard of major spacecraft and ground events
 • Secure
 • Tailorable, self-service capability to access all spacecraft timelines
 • Liberate the data
 • Empower each engineer to tailor requests for any SSMO spacecraft
• A web service based on NIST’s Software as a Service (SaaS) model
A timeline view of ACE, Fermi and LRO

[Image of a timeline view of ACE, Fermi and LRO events]
A view of a closeup of MMS1
A view of LRO
Execute General Mission Analysis Tool (GMAT) in the cloud
Telemetry as a Service (TaaS)

Break the barrier to data access
• **Provide local & remote users access to telemetry & tracking**
 • Secure
 • Tailorable, self-service capability to access all SSMO spacecraft telemetry & tracking:
 • Liberate the data
 • Empower each engineer to tailor requests for any SSMO spacecraft
 • Each engineer can perform analysis without interfering with operations workflows
 • A *web service* based on NIST’s Software as a Service (SaaS) model
A view of the portal

<table>
<thead>
<tr>
<th>SPACECRAFT</th>
<th>PACKET</th>
<th>MNEMONIC</th>
<th>MNEMONIC DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermi</td>
<td>11</td>
<td>SAC_MODE</td>
<td>GNC_TLM_MODE Telemetry (SIANCILLARY GNC_MODE). Current spacecraft ACS mode</td>
</tr>
<tr>
<td>LRO</td>
<td>203</td>
<td>ACRW1SPD</td>
<td>Reaction Wheel 1 Wheel Speed</td>
</tr>
<tr>
<td>MMSI</td>
<td>126</td>
<td>PSE_BATV</td>
<td>'PSE_PM00_BATT,V' BATTERY MODULE ANALOG BATTERY VOLTAGE; P306.8 pwr rtm to chs(+). 23 chs to pwr rtm(+)</td>
</tr>
<tr>
<td>SDO</td>
<td>138</td>
<td>ACS_P_DIAG[1]</td>
<td>Kalman Filter covariance diagonal element 1,2,3,4,5,6.</td>
</tr>
<tr>
<td>Swift</td>
<td>16</td>
<td>SAC_MODE</td>
<td>ACS_TLM_MODE Telemetry. Current spacecraft ACS mode</td>
</tr>
<tr>
<td>Swift</td>
<td>16</td>
<td>SAC_MODE</td>
<td>ACS_TLM_MODE Telemetry. Current spacecraft ACS mode</td>
</tr>
</tbody>
</table>
A view of a plot of wheel speeds
Navigation as a Service (NaaS)

Break the barrier to data access
Navigate the Spacecraft in Support of Mission Operations

Navigation Services
- Maneuver planning
- Maneuver execution
- Maneuver reconstruction
- Orbit estimation & control
- Attitude estimation & control

Scheduling & Planning in Support of Navigation
- Maneuvers
- Network Availability
- Antenna Availability
- AOS/LOS
- Shadows
- Interference
- Tracking
“Looking Beyond the Horizon”
How would one simulate hundreds of spacecraft?

• With the coming age of OneWeb, and other massive spacecraft operations proposals, how does one:
 • Design, Model and Simulate Ground and Space Segments?
 • Leverage Cloud Computing & Create Service Models, such as:
 • Spacecraft as a Service (SCaaS)
 • Flight Software as a Service (FSWaaS)
 • Ground Segment as a Service (GSaaS)
 • Auto Provision, Orchestrate & Terminate services at will
Thank you.

Any Questions?