Reduced Crew Operations Research
at NASA Ames Research Center
Initial RCO/SPO Efforts

• Motivation
 – *Enable commercial transports to fly with only one pilot to save money and address a potential pilot shortage*

• Possible Approaches to RCO/SPO
 – *Support from flight deck automation*
 – *Remote support from a human operated ground station*
 – *Remote support from a human operated ground station and flight deck automation*

• Goals and Objectives
 – *Develop and evaluate advanced flight deck- and ground-based technologies and concepts utilizing*
 • Unmanned Aircraft Systems (UAS) technologies
 • New air-ground datalink capabilities
 • Intelligent agents located on flight decks and at ground stations
Milestones

• SPO TIM- Spring 2012
 – Technical Interchange Meeting
 – Gain insight from members of aviation community regarding SPO

• Non Co-Located Pilot Simulation – Fall 2012
 – Tested the effects of separation on crew interaction
 – Low fidelity

• Air/Ground Simulation Evaluation – Fall 2013
 – Initial prototype ground station
 – Test new tools to mitigate issues found in SPO I
 – High fidelity flight deck/malfunctions

• Ground ConOps Simulation Evaluation – Summer 2014
 – Ground station interacts with multiple aircraft

• Multi-Aircraft Support Demonstration – Winter 2016
 – Ground station for multi-aircraft monitoring and support

• Human-Autonomy Teaming Demonstration – Summer 2016
 – Integration of human-autonomy teaming tools
SPO TIM

- Single Pilot Operations Technical Interchange Meeting
 - Jointly hosted by Ames and Langley at NASA Ames April 10-12, 2012
 - Primary focus to consider how tasks and responsibilities might be re-allocated to allow for SPO
 - Approximately 70 people attended who represented government, academia, industry
SPO TIM Findings

• Attendees seemed to believe that an exploration of SPO feasibility would be beneficial regardless of whether or not SPO is adopted
 – *Almost all components of current day NAS could reap benefits from SPO R&D*

• Most seemed to believe that SPO is feasible

• Generally believe biggest motivator for exploring SPO is the potential cost savings
 – *Mixed on whether SPO would actually result in cost savings*

• Identified issues, recommendations, and suggestions for research directions

Non Co-Located Pilot Simulation

• Identified the impact of separation on crew interaction and decision-making
 – Lack of crew acknowledgements
 – Lack of Situation Awareness (SA) related to the other pilot, information gathering and decision making

Together Condition

Separate Condition

Captain
First Officer
Concept of Operations

Ground Operators

• Ground operators collectively perform three core functions:
 1. *Conventional dispatch of multiple aircraft*
 2. *Distributed piloting support of multiple nominal aircraft*
 3. *Dedicated piloting support of a single off-nominal aircraft*

• Many possible structures for organizing ground operators to perform these core functions; some examples are:
 – *Hybrid ground operators* who perform functions 1, 2, and 3
 – *Specialist ground operators*, consisting of:
 • *Ground associates* who perform functions 1 and 2
 • *Ground pilots* who perform function 3
Ground Operators

Org. Structure
Concept of Operations
Development Plan

• Objectives
 – Define functions for flight deck and ground station operators
 – Develop new tools for flight deck and ground station
 – Develop new procedures for flight deck/ground station interaction

• Approach
 – Spiral development
 • Start with things as close to current day as possible and change incrementally
 – Focus on Crew Resource Management (CRM)
 • If the ground operator can interact with the aircraft and onboard pilot as effectively as a first officer does today, we know we can achieve safety goals
Air/Ground Simulation Evaluation

- Developed prototype ground station and collaboration tools
- Identified issues with ground pilot’s ability to assist multiple aircraft simultaneously

Collaborative Tools: Flight Deck

Collaborative Tools: Ground Station
Ground ConOps Simulation Evaluation

- Examined handoffs between Ground Operator and Remote Pilot
- No situation awareness issues found
Multi-aircraft Support Demonstration

- Developed ground station for multi-aircraft monitoring and support
Moving toward Human-Autonomy Teaming

Develop a framework for human-autonomy teaming in aviation and provide guidelines and recommendations for its application. The framework will identify critical aspects of human-autonomy teaming and provide a mechanism for evaluation.
What is HAT

• Human-Autonomy Teaming (HAT) is characterized by collaboration between the human and the autonomy, rather than just a decision support aid. They share goals, information and a common language.

• HAT extends CRM principles used between human operators to interactions between humans and automation resulting in cross validation of actions and situation awareness by both operators and automation.
HAT Principles

• Transparency
 – *Good CRM between humans requires team members to understand what the others are doing and why*

• Negotiation
 – *Good CRM between humans requires people with different information to enter a dialog about how best to achieve their goals*

• Shared Language/Communication
 – *Good CRM between humans requires an explicit communication about goals and actions*

• Human Directed
 – *We believe that the human should be giving explicit direction to the automation*
Recommended airports - rank ordered.
Adding HAT Principles to the Ground Station

With Added Transparency
Adding HAT Principles to the Ground Station

- Transparency: Divert reasoning and factor weights are displayed.

- Negotiation/Dialog: Operators can change factor weights to match their priorities.

- Shared Language/Communication: Numeric output from ACFP was found to be misleading by pilots. Display now uses English categorical descriptions.
Adding HAT Principles to the Ground Station

- Human-Directed: Operator calls “Plays” to determine who does what