Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

Advanced Collision Avoidance System for UAS (ACAS Xu) Interoperability White Paper Presentation

SC-228 WG-1

15 February 2017
Background

- Phase 1 DAA MOPS specified two classes of DAA equipage:
 - Class 1: Remain well clear (RWC) function only
 - Class 2: RWC + Collision Avoidance (CA; TCAS II)
 - Two separate systems

- Phase 2 DAA MOPS will support the development of a third class of DAA equipage:
 - Class 3: ACAS Xu providing RWC + CA
 - Single integrated system
Phase 2 ACAS Xu Scope

- ACAS Xu will specify an integrated DAA system, it will need to show compliance with the RWC alerting thresholds and alerting requirements defined in the DAA MOPS
- However, integration of RWC and CA functions within ACAS Xu allows for more seamless integration of alerting and guidance than the Class 2 system
- Phase 2 MOPS should address the following issues/areas to support the integration of RWC and CA functionality for DAA systems:
 - DAA alert levels for both RWC and CA
 - RWC alert processing and performance requirements
 - Visual and aural display of DAA (RWC & CA) alerts
 - RWC guidance processing and performance requirements
 - Visual display of DAA (RWC & CA) guidance
DAA alert levels RWC and CA

• DAA Phase 1 Alerting structure based on DAA timeline and desired pilot actions

• *Preventive Alert:* awareness of intruders within original SARP well clear definition vertical miss distance of 700ft

• *Corrective Alert:* loss of well clear is predicted, coordinate with ATC prior to maneuvering

• *Warning Alert:* loss of well clear imminent, maneuver first, then contact ATC
 – Originally intended to be for Class 1 system only (no CA), but was maintained for Class 2 system based on performance benefits observed in HITLs
 – For ACAS Xu, should the DAA warning alert be maintained separately from ACAS Xu CA “RA”, removed, or combined?

• Any changes to the Phase 1 alert structure will require updates to the alert processing/performance requirements
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| ![Symbol] | TCAS RA* | • **Immediate action required**
• Comply with RA sense and vertical rate
• Notify ATC as soon as practicable after taking action | “Climb/Descend” |
| ![Symbol] | Warning Alert | • **Immediate action required**
• Notify ATC as soon as practicable after taking action | “Traffic, Maneuver Now”
X2 |
| ![Symbol] | Corrective Alert | • On current course, **corrective action required**
• Coordinate with ATC to determine an appropriate maneuver | “Traffic, Avoid” |
| ![Symbol] | Preventive Alert | • On current course, corrective action **should not be required**
• Monitor for intruder course changes
• Talk with ATC if desired | “Traffic, Monitor” |
| ![Symbol] | Guidance Traffic | • **No action required**
• Traffic generating guidance bands outside of current course | N/A |
| ![Symbol] | Remaining Traffic | • **No action required**
• No coordination required | N/A |

* Applies to Class 2 DAA equipment only.
Visual and aural display of DAA (RWC & CA) alerts

- Prescriptive requirements for aural and visual, RWC caution- and warning-level alerts already exist
- Prescriptive requirements for aural and visual vertical CA alerts already exist from TCAS (i.e., RAs)
- If CA and RWC warning alerts are combined, need to determine appropriate symbol
- New aural alerts needed for horizontal CA alerts
 - Tone versus verbal
RWC guidance processing and performance requirements

• DAA Phase 1 MOPS provided two types of RWC guidance:
 – Guidance to maintain DWC
 – Guidance to regain DWC

• Maintain DWC guidance provides information about corrective and warning alerts
 – Changes to DAA alert structure will affect guidance processing and performance requirements

• Guidance to regain DWC requirements driven largely by:
 – Need to provide continuous guidance even when a loss of well clear can no longer be avoided
 • Especially when no CA exists, i.e. Class 1
 – Need to ensure that pilot will make dual maneuver for the “hard case” with Class 2 system
 – Should not be necessary with ACAS Xu, but tuning/analysis required to ensure that there is no gap in positive guidance between suggestive and directive guidance transition
Visual display of DAA (RWC & CA) guidance

- New requirements to display horizontal directive guidance
- Modification of TCAS II requirements to display vertical directive guidance
 - Vertical speed (legacy) versus altitude guidance
- Compliance with blended maneuvers
Phase 1 MOPS will be fully supported by the initial ACAS Xu MOPS

Initial ACAS Xu MOPS is also expected to support much of the Phase 2 DAA MOPS Operational Environments, including sustained operations in Classes B through E airspace and terminal operations for properly equipped UAS.

Coordination between SC-228 and SC-147 will be important to ensure these environments are defined compatibly and with the same operational assumptions.
Assumptions

- SC-228 will address MOPS for RWC and CA alerting and guidance high-level requirements (e.g. timing performance, definitions, and thresholds), as well as the human machine interface requirements for the integrated RWC-CA ACAS Xu equipage.
- SC-147 will address MOPS for RWC and CA alerting and guidance low-level requirements (e.g. textual requirements, prescriptive algorithm implementation), and ACAS Xu will comply with the DAA MOPS developed within SC-228.
Approach

- Safety/risk analysis of integrated Warning Alert/RA threshold
 - Need decision about whether we will combine the two warning alert levels ASAP
- Human factors analysis to determine potential visual and aural alerting and guidance displays for horizontal RAs
- Human factors analysis of how to display vertical RA guidance
- Human-in-the-loop (HITL) evaluation of potential visual and aural alerting and guidance displays for horizontal RAs
- Human factors analysis of how to display/prioritize simultaneous horizontal and vertical RWC and CA guidance
- Validate pilot performance with ACAS Xu through HITL simulation
NASA’s Planned ACAS Xu Support

- Two HITL simulations planned
 - Summer 2017 (Run 3)
 - Summer 2018 (Run 4)
- HITL 1 Schedule
 - Experimental Design: 1 FEB – 1 APR 2018
 - Programming: 1 APR – 15 JULY
 - Shake-down: 1 JULY – 1 AUG
 - Data Collection: 1 AUG – 1 SEPT
 - Analysis: 1 SEPT – 30 SEPT
 - Results Dissemination: 30 SEPT
Proposed Experimental Design

• Primary IV
 – Horizontal RA Guidance (aiming for 2 levels; within-subjects)
 • Directive: explicit, single heading (arrow pointing to precise recommended heading)
 – 2 options to choose between
 • Range: narrow banding region (similar to vertical rate guidance with TCAS)
 – 3 options to choose between

• Secondary IV
 – Text Accompaniment (aiming for 2 levels; within-subjects)
 • No text
 • General text: ‘turn left/right, climb/descend’
 • Directive text: ‘turn left/right heading 310, climb/descend altitude 10 thousand’

• Backup IV
 – Vertical Guidance (2 levels; could be between-subjects)
 • Vertical rate guidance (as done with TCAS)
 • Altitude guidance (as done with JADEM)
Proposed Experimental Design

• Additional considerations:
 – Aural Alerts
 – Blended maneuvers
 – Altitude guidance versus vertical speed:
 • Very difficult to show a single altitude option via bands (issue of granularity and salience)
 • This forces us to either:
 – Use something other than bands to show single recommended heading/altitude
 – Show range instead of single option
 • Important to keep display of vertical guidance in mind for all horizontal options
 – i.e., if range is used for horizontal, should also be used for vertical
Horizontal RA Guidance – Directive (Option 1)

Arrow with embedded text shows exact heading to achieve

Target heading 312°

Vertical RA Guidance – Directive (Option 1)

Arrow with embedded text shows exact altitude to achieve

Target altitude 10,000ft

Notes:

- Embedded text allows exact heading/altitude to be achieved without separate text box or directive aural alert
Horizontal RA Guidance – Directive (Option 2)

Arrow (no embedded text) shows exact heading to achieve

Target heading 312°

Vertical RA Guidance – Directive (Option 2)

Arrow (no embedded text) shows exact altitude to achieve

Target altitude 10,000ft

Notes:

- Absence of embedded text makes determining exact heading very difficult if there is no supplemental text box or directive aural
Horizontal RA Guidance – Range (Option 1)

Banding shows a 10° range for horizontal maneuver

Target heading 312°

Vertical RA Guidance – Range (Option 1)

Banding shows a 500’ range for vertical maneuver

Target altitude 10,000ft

Notes:

- Assumes a target heading of 312° with +/-5° of buffer & target altitude of 10000’ with +/-250’ of buffer
 - Provided range should be no smaller than the smallest hash marks (e.g., 10° range markers and 500ft altitude markers)
- Target bands could also be shown as separate bands
Horizontal RA Guidance – Range (Option 2)

Banding (separate from primary bands) shows a 10° range for horizontal maneuver

Target heading 312°

Vertical RA Guidance – Range (Option 2)

Banding (separate from primary bands) shows a 500’ range for vertical maneuver

Target altitude 10,000ft

Notes:

- Assumes a target heading of 312° with +/-5° of buffer & target altitude of 10000’ with +/-250’ of buffer
 - Provided range should be no smaller than the smallest hash marks (e.g., 10° range markers and 500ft altitude markers)
- Target bands could also be shown as separate bands
Horizontal RA Guidance – Range (Option 3)
Wedge shows a 10° range for horizontal maneuver

“Turn Left Heading 312°”

Vertical RA Guidance – Range (Option 3)
Wedge shows a 500’ range for vertical maneuver

“Climb Altitude 10 thousand”

Notes:
- Assumes a target heading of 312° with +/-5° of buffer & target altitude of 10000’ with +/-250’ of buffer
 - Provided range should be no smaller than the smallest hash marks (e.g., 10° range markers and 500ft altitude markers)
Proposed Experimental Design

- Exp set up identical to PT6
 - 2 parallel UAS systems
 - ATC in the loop
 - VSCS generated & MACS generated intruders
 - JADEM will fill gaps to make run 3 closer to Phase 1 DAA MOPS
 - Provide vertical DAA guidance & preventive DAA alerts (and possibly DAA warning alerts)
 - Need to see how well clear recovery behaves with current placement of run 3 RA