Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

Tristan Hearn, Eric Hendricks, Jeffrey Chin, Justin Gray, Kenneth T. Moore

NASA Glenn Research Center, Cleveland, OH

June 16th, 2016
Faster engine cycle optimization

- Optimization of a separate flow turbofan design was performed with analytic derivatives using the cycle analysis code Pycycle
- Computation cost on average was 1/3 that of an optimization performed on an NPSS implementation, with finite-difference derivatives
Pycycle is a 1D cycle modeling tool similar to NPSS, but with an extra level of decomposition\(^1\)

\[N_{\text{mech}} \rightarrow f_4 \rightarrow \text{Pressure Drop} \rightarrow \text{Ideal Flow} \rightarrow \text{Enthalpy Drop} \rightarrow \text{Power} \rightarrow \text{TurbineH} \]

This allows for the implementation of analytic derivatives

OpenMDAO computes coupled derivatives for complex multidisciplinary models automatically

Forward:

\[
\frac{dF}{dx_i} = \frac{\partial F}{\partial x_i} \Bigg|_{m \times 1} - \frac{\partial F}{\partial y} \Bigg|_{m \times n} \left(\frac{\partial R}{\partial y} \right)^{-1} \frac{\partial R}{\partial x_i} \Bigg|_{n \times 1}
\]

(1)

Adjoint:

\[
\frac{dF_i}{d\mathbf{x}} = \frac{\partial F_i}{\partial \mathbf{x}} \Bigg|_{1 \times k} - \left(\left(\frac{\partial R}{\partial y} \right)^T \right)^{-1} \left(\frac{\partial F_i}{\partial \mathbf{y}} \right)^T \frac{\partial R}{\partial \mathbf{x}} \Bigg|_{n \times k}
\]

(2)
Analytic derivatives provide significant computational savings for gradient based optimization.
A separate flow turbofan model was built in both Pycycle and NPSS and optimized in OpenMDAO

\[\text{Minimize:} \quad TSFC \]

\[\text{With respect to:} \]

1 \(\leq \) FPR \(\leq \) 2
1 \(\leq \) CPR \(\leq \) 30
1 \(\leq \) BPR \(\leq \) 12
1 \(\leq \) \(W \) \(\leq \) 2000 lbm/s

\[\text{Such That:} \]

OPR = 30
\(F_n \) = 25,000 lbf
\(T_4 \) \(\leq \) 3000° R

Flight condition: 35,000 ft, 0.8 MN
Pycycle and NPSS based optimizations drove towards the same answer

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Optimized (Pycycle)</th>
<th>Optimized (NPSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPR</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CPR</td>
<td>10.3</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>BPR</td>
<td>5.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>W</td>
<td>500.0</td>
<td>1069.2</td>
<td>1032.40</td>
</tr>
<tr>
<td>TSFC</td>
<td>0.612</td>
<td>0.331</td>
<td>0.320</td>
</tr>
</tbody>
</table>

Mass flow and TSFC vary between codes due to a thermodynamic discrepancy
Both internal solver tolerances were set to 10^{-5}

Pycycle converged to much tighter tolerances overall

<table>
<thead>
<tr>
<th></th>
<th>Pycycle</th>
<th>NPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. constraint violation</td>
<td>$3.5 \cdot 10^{-15}$</td>
<td>$1.2 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>ShaftL$_{net \ pwr.}$</td>
<td>$1.64 \cdot 10^{-6}$</td>
<td>-0.022</td>
</tr>
<tr>
<td>ShaftH$_{net \ pwr.}$</td>
<td>$6.11 \cdot 10^{-8}$</td>
<td>$2.826 \cdot 10^{-6}$</td>
</tr>
</tbody>
</table>
Optimization performance metrics

Analytic Derivatives give fewer iterations and lower wall time on average

<table>
<thead>
<tr>
<th></th>
<th>Pycycle</th>
<th>NPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD step size</td>
<td>-</td>
<td>10⁻⁵ 10⁻⁴ 0.99 ⋅ 10⁻³ 10⁻³ 1.01 ⋅ 10⁻³</td>
</tr>
<tr>
<td>SNOPT iterations</td>
<td>44 120 58 721 11 98</td>
<td></td>
</tr>
<tr>
<td>Run time (s)</td>
<td>3753 30912 12796 131581 1071 18788</td>
<td></td>
</tr>
</tbody>
</table>

- NPSS optimizations were highly sensitive to step size
- Difference in compute cost is primarily due to the difference in the cost of computing derivatives
- Tight tolerance requires more iterations for each FD step
Conclusions

- Results suggest analytic derivatives are suitable for optimization of engine cycle analysis.
- Optimizations performed using engine cycle analysis outperform analyses performed using finite-difference derivatives.
- Access to analytic adjoint derivatives will enable more ambitious MDO problems (propulsion-airframe, propulsion-mission, etc.)
Acknowledgments

- TAC Transformational Tools and Technologies Project
- Thomas Lavelle, NASA GRC
- Christopher Snyder, NASA GRC