Research and Engineering Directorate Leadership Team

Deputy Director of Research and Engineering (L)
Dr. Ajay K. Misra

Director of Research and Engineering (L)
Dr. Rickey J. Shyne

Associate Director of Research and Engineering (L)
Maria Babula

Chief Engineer Office (LA)
Richard T. Manella

Management Support and Integration Office (LB)
Susan Kolibas

Communications and Intelligent Systems Division (LC)
Dawn C. Emerson

Power Division (LE)
Randall B. Furnas

Materials and Structures Division (LM)
James J. Zakrjajek, Acting

Systems Engineering and Architecture Division (LS)
Derrick J. Cheston

Propulsion Division (LT)
Dr. George R. Schmidt
Provides expertise, plans, conducts and directs research and engineering in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition and system development for application in current and future aeronautics and space systems.

LC Competency Elements:

Space Communications (SpaceComm) & Aeronautical Communications (AeroComm)

Expertise:
- Networks & Architectures
- Information & Signal Processing
- Advanced High Frequency
- Optical Communications

Intelligent Systems – Cross-Cutting Competencies

Expertise:
- Optics and Photonics
- Smart Sensor Systems
- Instrumentation- Electronic
- Controls- Dynamic System Modeling and Controls
Communications and Intelligent Systems Division (LC)

Chief: Dawn C. Emerson
Deputy Chief: Dr. Félix A. Miranda

Communications ST: Dr. Robert R. Romanofsky

Architectures, Networks and Systems Integration Branch
LCA/Denise Ponchak

Intelligent Control and Autonomy Branch
LCC/Dr. Sanjay Garg

Advanced High Frequency Branch
LCF/Dave Buchanan

Information and Signal Processing Branch
LCI/Gene Fujikawa

Optics and Photonics Branch
LCP/Dr. George Baaklini

Smart Sensors and Electronics Systems Branch
LCS/Dr. Larry Matus

115 FTE
58 WYE

Education

PhD MS BS
Architectures, Networks and Systems Integration Branch (LCA)

Communications Systems
- Requirements decomposition, systems definition, development, hardware and software build up, test and delivery of Space Network compatibility test unit including TDRS signal simulator.

Aeronautical Communications
- Includes air-to-air, air-to-ground, and ground-based mobile wireless communications, information networking, navigation and surveillance research, technology development, testing and demonstration, advanced concepts and architectures development, and national and international technology standards development.

Network Research
- Development of network components, design of network layers and networked systems architectures. Emphasis is on secure wireless mobility, protocol characterization and development, requirements definition, and flight software/hardware component assessment. Also includes "virtual" mission operations.
Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

- Communications satellite
- Cooperative aircraft
- Noncooperative aircraft
- Air traffic services (en route)
- Radar
- Sense and Avoid
- Ikhana UAS DAA test aircraft
- Command and Control
- T-34 UAS surrogate CNPC test aircraft
- CNPC ground stations
- UAS Restricted-Use Certification
- UAS vehicle autonomy
- Research ground control station
- Precision agriculture
- Small UAS (sUAS) Mission Support Technologies
- UAS ground control station
- Human Systems Integration

LEGEND:
- Sense and Avoid (SAA/DAA Technologies)
- Air Traffic Services
- Center and Non-Airline Communications (CNPC) Network
- Legacy Command and Control (C2) Links

ACRONyms:
- ADS-B: Automatic Dependent Surveillance—Broadcast
- TCAS: Traffic and Collision Avoidance System
- TRACON: Terminal Radar Approach Control Facility

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE
Information and Signal Processing Branch (LCI)

LCI Overview
Conducts research and technology development of information and signal processing methods and approaches of digital communications systems for aerospace applications. Emphasis on software-defined and cognitive radios; open SDR architectures and waveform development; position, navigation and timing methods; spectrum and power efficient techniques; reconfigurable microelectronic devices

Focus Areas
• Software-Defined and Cognitive Radios
 o Space Telecommunications Radio System (STRS)
 o STRS-compliant Hardware and Software
 o SDR Waveform Development
 o Digital Core for RF/Optical Terminal
• High Speed Signal Processing
 o Computer Modeling and Simulation Tools
 o Wireless and Microelectronic Devices for Communications
• Advanced Exploration Systems
 o Integrated Audio/Microphone Arraying
 o EVA Radio Development
 o Surface Navigation
• SCaN Testbed Flight Radio Experiments and Demonstrations
 o GPS Navigation and Timing
 o Ka-Band, Bandwidth-Efficient, High Rate Waveform
 o S- and Ka-Band IP Networking and Routing
 o Adaptive Modulation and Coding for Cognitive Radio

Facilities/Labs
• Software-Defined and Cognitive Radio Technology Development Laboratory
• Digital Systems and Signal Processing Lab
• EVA Radio and Integrated Audio Lab
• SCaN Testbed on ISS Available for Experimenters

SCaN Testbed
Software Defined Radios
Extra-Vehicular Activity (EVA) Radio
AES/EVA Integrated Audio
iROC Flexible Digital Core
Space Communication and Navigation Testbed

SCaN Testbed aboard International Space Station

- JPL SDR
- Ka-Band HGA
- S-Band MGA
- S-Band LGA
- GD SDR
- Thermostat Control Assembly
- S-Band LGA
- S-Band LGA
- ExPA (FRAM)
- L-Band LGA (GPS)
- Avionics
- RF Subsystem Plate Assembly
- TWTA Power Supply Unit
- Gimbal Control Electronics (GCE)
- Antenna Pointing System Integrated Gimbal Assembly (APS IGA)
- Harris SDR
- S-Band LGA
- Harris Up/Dn Converter
- Solar Array
- Radiator
- SCaN Testbed aboard International Space Station
Goal: Develop next generation cognitive technologies for communications to increase mission science return and improve resource efficiencies.

SCaN Test Bed is an early proving ground for experiments in cognitive communications
- Performed experiments in VCM and ACM
- Moving toward cognitive communications
 - Enhanced adaptive capability- More efficient use of spectrum, power and network resource management. Adapt mission operations based on internal and external environments.

SDR
- Configurable Properties

Variable Coding & Modulation (VCM)
- Reconfigure system based on predictions

Adaptive Coding & Modulation (ACM)
- Dynamic reconfiguration based on feedback

Cognitive Radio/System
- Adapting and learning to form intelligent systems: cognitive radios, intelligent networking, user initiated services

Automatically compensate for dynamic link environment
Advanced High Frequency Branch (LCF)

Branch Overview

- Conducts research and technology development, integration, validation, and verification at frequencies extending up to the terahertz region in the areas of semiconductor devices and integrated circuits, antennas, power combiners, frequency and phase agile devices for phased arrays, and radio wave propagation through Earth’s atmosphere. In support of NASA space missions and aeronautics applications.

- R&D is conducted in-house and also in collaboration with academia and industry to develop low mass, small size, high power and efficiency traveling-wave tube amplifiers, solid state power amplifiers, novel antenna technologies (e.g., wideband antennas, hybrid antennas (i.e., RF/Optical), ground stations, among others.

- The Branch supports development of advanced technologies such as superconducting quantum interference filter (SQIF) for ultra-sensitive receivers and Ka-band multi-access arrays for NASA’s next generation space communications.

- Facilities include planar and cylindrical near-field, far-field and compact antenna ranges, cryogenic microwave and millimeter-wave device and circuit characterization laboratory, high power amplifier characterization laboratory, radio wave propagation laboratory, and clean room facilities.

- Semiconductor device modeling and high frequency circuit simulation, fabrication, and integration facilities are also available.

R&D 100 Award Winning Technologies

- AlphaSat Propagation Terminal in Milan, Italy
- Hybrid RF/Optical Antenna
- Inflatable Antennas
- Semiconductor/Nanofabrication Clean Room Facility
- Nanoionic Switch
- High Efficiency Power Combining TWTA
- SQIF Chip
- NanoFETs
- Ka-Band TWTA
- Phased Array Systems
- Antenna Metrology Facilities
Advanced RF Antenna and Optical Technologies

Antennas/Propagation

AlphaSat Propagation Terminal in Milan, Italy

Phased Array Systems

Ka

Inflatable Antennas

Ku

Mesh Antennas

Shape Memory Polymers Antennas

Teletenna Concept

3-D Printed Antennas for Cubesats

Uplink Arraying

SCaN Testbed Ground Station

Hybrid RF/Optical Antenna
Optics and Photonics Branch (LCP)

Optical Instrumentation

- Flow/Noise Diagnostics
 - Particle imaging Velocimetry (PIV)
 - Background Oriented Schlieren
 - Rayleigh Scattering
 - PIV Tomography
 - Combustion diagnostics
 - Raman Diagnostics (Species, T)
 - Plasma generation

- Surface Diagnostics
 - Temperature Sensitive Paint
 - Pressure Sensitive Paint
 - Stress Sensitive Film

- Engine Icing
 - Light Extinction Tomography
 - Light Extinction Probes
 - Raman Spectroscopy
 - Impedance Sensor

http://www.grc.nasa.gov/WWW/OptInstr/
- Our data and instrumentation help designers understand the fundamental physics of new systems, validate aeronautics computational and life models, and improve space optical communications for human and robotic explorations.
- Our data leads to improved designs, validation and verification of systems performances, increased communications, safety and security and reduced design cycle times for many of the core technologies developed at Glenn and across NASA.

Optical Communications

- Free Space Communications
 - Optical Teletennas
 - Beaconless Pointing Systems
 - High Data Rate for Deep Space & Near Earth

- Secure Quantum Communications
 - Quantum Entanglement
 - Pulsed photon Pairs
 - Quantum Illumination
 - Quantum Key Distributions

Photonics and Health Monitoring

- Mobile and Remote Sensing
 - On-Orbit Solar Cell Characterization MISSE 5-8; TACSAT-4;
 - Hyperspectral Imaging
 - Mobile Sensing Platforms

- Communications
 - Communications over power lines
 - Communications Interface Boards
 - High Data Rate

- Health Monitoring
 - Microwave Blade Tip Clearance
 - Self diagnostic Accelerometer
 - Fiber optics sensors
 - Morphology dependent resonance
 - Phosphor Thermography
 - Capacitance & piezo patches sensors
 - Wireless and wired techniques
Remote Sensing of Harmful Algal Blooms (HAB) in Lake Erie

Current status
- Airborne hyperspectral sensing capability for monitoring potentially harmful algal blooms
- 14 flights in 2014, 26 flights in 2015 and 6 flights this year
- Provide HAB data on water intakes in Lake Erie, small lakes and the Ohio river

Research partners also conduct water sampling and ground optical measurements
- NOAA GLERL
- University of Toledo
- Kent State University
- Michigan Tech Research Institute
- Bowling Green State University
- OhioView
- Naval Research Lab

HAB information provided by remote sensing and water sampling can provide for early warning to ensure proper water treatment and shutoff avoidance
Future Directions in HSI HAB Research

• New Platforms:
 – Integrate a hyperspectral imager into an unmanned aerial vehicle (UAV) starting in August 2016
 – Two hyperspectral imagers in development that are appropriate for a cubesat

• New Algorithms
 – Mirror based atmospheric correction
 – Verimax rotated principal component analysis
 – Tuned Cyanobacteria index

Courtesy of Sinclair Community College
iROC Objectives:

- Combine the best features of deep space RF and optical communications elements into an integrated system:
- Increase data throughput while reducing spacecraft mass, power and volume.
- Extensible to, and mitigates risk for missions from near Earth to deep space.
- Prototype and demonstrate performance of key components to increase TRL, leading to an integrated hybrid communications system demonstration.

Key enabling technologies:

- Combined RF/optical Teletenna
- Precision beaconless pointing/navigation through sensor fusion
- RF/optical Software Defined Radio (SDR)
- Networked RF/optical link management (DTN)
Smart Sensors and Electronics Systems Branch (LCS)

Description
Conducts research and development of adaptable instrumentation to enable intelligent measurement systems for ongoing and future aerospace propulsion and space exploration programs. Emphasis is on smart sensors and electronics systems for diagnostic engine health monitoring, controls, safety, security, surveillance, and biomedical applications; often for high temperature/harsh environments.

Focus Areas
- Silicon Carbide (SiC) - based electronic devices
 - Sensors and electronics for high temp (600°C) use
 - Wireless sensor technologies, integrated circuits, and packaging
- Micro-Electro-Mechanical Systems (MEMS)
 - Pressure, acceleration, fuel actuation, and deep etching
- Chemical gas species sensors
 - Leak detection, emission, fire and environmental, and human health monitoring
- Microfabricated thin-film physical sensors
 - Temperature, strain, heat flux, flow, and radiation measurements
- Harsh environment nanotechnology
 - Nano-based processing using microfabrication techniques
 - Smart memory alloys and ultra low power devices

Facilities/Labs
- Microsystems Fabrication Facilities
 - Class 100 Clean Room
 - Class 1000 Clean Room
- Chemical vapor deposition laboratories
- Chemical sensor testing laboratories
- Harsh environment laboratories
 - Nanostructure fabrication and analysis
 - Sensor and electronic device test and evaluation
Goal: Determine capability of advanced detection, diagnostic and prognostic systems to characterize engine performance, and identify fault modalities, during rapid engine degradation caused by the ingestion of volcanic ash.
Intelligent Control and Autonomy Branch (LCC)

Propulsion Controls
- Active Combustion Control
 - Control of Thermo-acoustic Instability
 - High Bandwidth Fuel Actuation
- Advanced Control Architecture
 - Distributed Engine Control
 - Hardware-in-the-loop Test-bed
- Intelligent Engine Control
 - Enhanced Engine Response for Emergency Operations
 - Robust Engine Control
 - Model-Based Engine Control
 - V&V of Advanced Controls
- High Speed Propulsion
 - Aero-Propulsion-Servo Elasticity for Supersonic Propulsion System
 - Mode Transition Management for Air-Breathing Hypersonic Propulsion

Health Management
- Propulsion & Power Systems
 - Gas Path Health Management
 - Sensor Selection
 - Sensor Data Qualification
 - Fault Modeling and Diagnostics
 - Model-Based Engine Simulation for Engine Test, Calibration and Performance Analyses

Advanced Propulsion Concepts
- Unsteady Propulsion
 - Pulse Detonation Engine
 - Pressure Gain Combustion

Communications
- Integrated Radio and Optical Comm
 - Spacecraft Attitude Estimation
 - Spacecraft Structural Dynamics

Software Tools
- Engine Modeling & Control
 - C-MAPSS (Commercial Modula Aero Propulsion System Simulation)
 - C-MAPSS40k (40,000 lb Thrust Engine)
 - T-MATS (Tool for Modeling and Analysis of Thermodynamic Systems)
 - Combustion Instability Simulation

Current NASA Programs
- Aeronautics Research Mission
 - Advanced Air Vehicle
 - Airspace Operations and Safety
 - Transformative Aeronautics Concepts
- Human Exploration and Operations Mission
 - Space Launch System
 - SCAN
 - Orion
Hypersonic Propulsion System Control

Control for Safe Transition from Low Speed To High Speed Flow Path Demonstrated in 10X10 testing for Mach 2.5 and 3

GRC 10-foot x 10-foot Combined Cycle Engine (CCE) Testbed
- Low to high speed flowpath transition control
- Shock positioning
- Fuel flow

Intelligent Control and Autonomy Branch