Visions of the Future:
Hybrid Electric Aircraft Propulsion

Cheryl Bowman
Outline

• NASA’s Motivation for Electrified Aircraft Propulsion Investment

• Strategic Thrust 4: Transition to Low Carbon Propulsion

• Hybrid and Electric Aircraft Propulsion Terminology

• NASA’s Approach to Electrified Aircraft Propulsion

• Convergent Aeronautics Solutions: for High Risk and High Payoff

• SCEPTOR/X-57: Near Term Flight Demonstration

• Advanced Air Transport Technology: Long Term Aircraft Investment for Electrified Propulsion

• Summary
Electrified Aircraft Propulsion: Motivation

NASA Aeronautics Research Mission Directorate

Mega Drivers

Global

Sustainable

Strategic Thrusts

6 Strategic Thrusts

Transformative

Safe, Efficient Growth in Global Operations
Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft
Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles
Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion
Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance
Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation
Develop high impact aviation autonomy applications

www.nasa.gov
The Low Carbon Challenge is to enable carbon-neutral growth in aircraft operations:
Electrified Aircraft Propulsion Terminology

• **Electrified Propulsion refers to the use of electric power for aircraft propulsion**
 – Could be all or partially electric propulsion
 – Other aircraft development programs use the terms “More electric” or “All electric” as the use of electric power for secondary systems on aircraft such as control surfaces and wing de-icing

• **Hybrid Electric has two meanings in aircraft context**
 – One meaning is the use of two power sources, such as turbine engine and electric motor, to drive the fan (or propeller) on an aircraft—hybrid electric powertrain
 – Another meaning is the combination of more than one propulsive sources such as engines, turboelectric energy generation, fuel cells energy generation, or battery energy storage—hybrid electric propulsion

• **Turboelectric Propulsion refers to on-air generated electric power for aircraft propulsion**
 – Turboelectric generation already provides electric power for secondary systems on aircraft
 – Fully turboelectric propulsion means that all turbine power goes to electricity
 – Partially turboelectric propulsion means a turbofan engine with some fraction of generated electric power going to propulsion
Baseline Aircraft with Podded Turbo-Fan

VEHICLE CONFIGURATION EXAMPLES

- SCEPTOR 4 PAX X-Plane
- SUGAR VOLT 150 PAX Study
- Current NRA 150 PAX Studies
- STARC-ABL 150 PAX Study
- ECO-150 150 PAX Studies
- N3-X 300 PAX Turbo-Electric
Electrified Propulsion: NASA’s Approach

Build, Test, Mature Enabling Technologies and Knowledge Bases

- **2020**: Small Aircraft
 - Modeling
 - Explore Architectures
 - Test Beds
 - Component Improvements

- **2030**: Increasingly electric aircraft propulsion with minimal change to aircraft outer mold lines

- **2040**: Prove Out Transformational Potential
 - Explore and demonstrate vehicle integration synergies enabled by hybrid electric propulsion
 - Single Aisle Transport
 - Work toward full PAI and HEP
 - Certify, Operate
 - Build, learn, demonstrate

Knowledge through Integration & Demonstration

Gain experience through integration and demonstration on progressively larger platforms.
Goal: Enable the paradigm shift to electric, hybrid electric, and turboelectric propulsion for reductions in energy consumption, emissions, and noise

Path:

• Identify promising propulsion / vehicle configurations
• Buy-down risk for crucial technologies in
 • Flight Control: new knobs in vehicle and subsystems
 • Power Conversion: electric machines & electronics
 • Power Control: vehicle electric grid management
 • Fundamental Enablers: materials and analysis
• Demonstrate results in purpose-built flight demonstration
Multiple Paths to Carbon Reduction

All Electric, Hybrid Electric, Distributed Propulsion
- On Demand Mobility Focus
- Small Plane Focused

Enable New Aero Efficiencies
Power Sharing
Distributed Thrust Control
Certification Trailblazing

Energy & Cost Efficient, Short Range Aviation

Turbo Electric, Distributed Propulsion
- Low Carbon Propulsion
- Transport Class Focused

Enable New Aero Efficiencies
High Efficiency Power Distribution
Power Rich Optimization
Non-flight Critical First Application

Energy & Cost Efficient, Transport Aviation
Convergent Aeronautics Solutions Project
Aircraft Hybrid/Electric Propulsion Activities

• **M-SHELLS** – Multifunctional Structures for High Energy Lightweight Load-bearing Storage
 – Integrates hybrid battery-supercaps into aircraft structure to increase effective specific power & specific energy
 – Converges advanced electrochemistries, microstructures, manufacturing, and nano-technologies

• **LION** – Integrated Computational-Experimental Development of Li-Air Batteries for Electric Aircraft
 – Investigates “electrolyte engineering” concepts to enable Li-Air batteries with high practical energy densities, rechargeability and safety
 – Converges advances in predictive computation, material science, and fundamental chemistry

• **HVHEP** – High Voltage Hybrid Electric Propulsion
 – Variable-frequency AC, kV, power distribution with DFIM machines for multi-MWe DEP applications
 – Minimizes constituent weights of power electronics, TMS, and fault protection

• **Compact High Power Density Machine Enabled by Additive Manufacturing**
 – 2 to 3x increase in specific power of electric machines for DEP enabled by additive manufacturing
 – Compact, lightweight motor designs/topologies, integrated cooling, and multi-material systems/components.

• **DELIVER** – Design Environment for Novel Vertical Lift Vehicles – cryo-cooling HEP task
 – Maximizing efficiency and power density of electronic components by cryogenic LNG-fuel cooling
 – Longer-range hybrid/electric UAS with reduced fuel-burn and emissions (CO2, sulfur, particulates)

• **FUELEAP** – Fostering Ultra-Efficient, Low-Emitting Aviation Power
 – GA aircraft / early-adopter application of JP-fueled SOFC power plant for clean, hybrid/electric architecture
 – Zero NOx electric power production at ~2x typical combustion efficiencies

• **SCEPTOR** – Scalable Convergent Electric Propulsion Technology and Operations Research
 – Seeks 5x reduction in cruise-energy-use by aerodynamic benefits of DEP & batteries in place of engines
 – DEP enables high efficiency wing & high performance wingtip motors for cruise
SCEPTOR X-57 Research Objectives

NASA SCEPTOR Primary Objective
- Goal: 5x Lower Energy Use (Comparative to Retrofit GA Baseline @ 150 knots)
 - Motor/controller/battery conversion efficiency from 28% to 92% (3.3x)
 - Integration benefits of ~1.5x (2.0x likely achievable with non-retrofit)

NASA SCEPTOR Derivative Objectives
- ~30% Lower Total Operating Cost (Comparative to Retrofit GA Baseline)
- Zero In-flight Carbon Emissions

NASA SCEPTOR Secondary Objectives
- 15 dB Lower community noise (with even lower true community annoyance).
- Flight control redundancy, robustness, reliability, with improved ride quality.
- Certification basis for DEP technologies.
Adv. Air Transport Technology Project Investment

- Integrated Vehicles and Concepts Evaluation
- Efficient, Low Noise Propulsors
- Boundary-Layer Ingestion Systems
- Highly Efficient Turbine Engines
- Power Systems Architectures
- Advanced Electrical Components
Adv. Air Transport Technology Project Investment

Objective
Key performance parameters and threshold level requirements for gas turbine aircraft augmented with electrical powertrain

Propulsion System Conceptual Design
- Concepts for system interaction exploration

Integrated Subsystems
- Flight control methodology for distributed propulsion

High Efficiency/Power Density Electric Machines
- Step change in component performance

Flight-weight Power System and Electronics
- High voltage power electronics, transmission, protection, and management

Enabling Materials
- Insulation, Conductors, Magnetic Materials

Scrutinizing tube & wing architectures

Revolutionary system testing

Superconducting and ambient machines

Transitioning materials from lab to component
NASA Electrified Propulsion Takeaways

• NASA Aeronautics Strategic Thrust 4 - Transition to Low-Carbon Propulsion is supporting investment in alternative aircraft propulsion including electrified aircraft propulsion

• The NASA vision includes transforming aviation via new propulsion technologies integrated with airframes to
 – increase aircraft functionality
 – reduce carbon emissions
 – improve operational efficiency and reduce noise

• There are many possible Electrified Aircraft configurations

• NASA investment includes vehicle concepts and technology to support aircraft for
 – Small to midsize aircraft to increase mobility provide a new paradigm
 – Commercial transport aircraft to impact the current large carbon producing market segment
Timeline of Machine Power Relevant to Aircraft Class

<table>
<thead>
<tr>
<th>Non-cryogenic</th>
<th>Largest Electrical Machine on Aircraft</th>
<th>Superconducting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kW</td>
<td>1 MW</td>
<td>30 MW</td>
</tr>
<tr>
<td></td>
<td>3 MW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 MW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 MW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-cryogenic</th>
<th>Largest Electrical Machine on Aircraft</th>
<th>Superconducting</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Seat</td>
<td>0.5 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td>50-250 kW</td>
<td>2 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td>50 Seat Turboprop 3 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td>Machines</td>
<td>50 Seat Jet 12 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-6 MW Electric Machines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 Seat 22 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-11 MW Electric Machines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 Seat 60 MW Total Propulsive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 -30 MW Electric Machines</td>
<td></td>
</tr>
</tbody>
</table>

PS 01758 – 1115

11

Seat

Total Propulsive Power

50 Seat Turboprop

3-**6** MW Electric Machines

50 Seat Jet

3-**6** MW Electric Machines

150 Seat

22 MW Total Propulsive Power

1-**11** MW Electric Machines

300 Seat

60 MW Total Propulsive

3 -**30** MW Electric Machines