Biased correction of SPP: Linear and Quantile Mapping Technique

Presented by:
Begum Rabeya Rushi
Regional Associate,
NASA/SERVIR-HKH
Earth System Science Center | University of Alabama, Huntsville.
Steps

• Making all cell size 0.05 and extent similar
• Biased correction of CHIRPS using gauge data
• Biased correction of SPP using CHIRPS
Table 1. SPPs Used in This Study and Their Specifications

<table>
<thead>
<tr>
<th>SPP</th>
<th>Provider</th>
<th>Primary Sensor Type</th>
<th>Spatial Resolution</th>
<th>Temporal Resolution</th>
<th>Spatial Coverage</th>
<th>Temporal Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSIANN-CCS<sup>a</sup> [Hong et al., 2004]</td>
<td>UCI</td>
<td>Infrared</td>
<td>0.04° × 0.04°</td>
<td>3 hourly</td>
<td>37.8°N–40.6°S 28.0°W–56.2°E</td>
<td>2006–2010</td>
</tr>
<tr>
<td>CMORPH<sup>b</sup> [Joyce et al., 2004]</td>
<td>NOAA-CPC</td>
<td>Infrared + Passive Microwave</td>
<td>0.25° × 0.25°</td>
<td>3 hourly</td>
<td>60°N–60°S 180°E–180°W</td>
<td>1998 to near present</td>
</tr>
<tr>
<td>TMPA-RT<sup>c</sup> [Huffman et al., 2007]</td>
<td>NASA</td>
<td>Visual + Infrared + Passive Microwave + Active Microwave</td>
<td>0.25° × 0.25°</td>
<td>3 hourly</td>
<td>50°N–50°S 180°E–180°W</td>
<td>1998 to near present</td>
</tr>
<tr>
<td>CHIRPS<sup>d</sup> [Funk et al., 2014]</td>
<td>UCSB</td>
<td>Merged Products + In-situ precipitation observations</td>
<td>0.05° × 0.05°</td>
<td>daily</td>
<td>50°N–50°S 180°E–180°W</td>
<td>1981 to near present</td>
</tr>
</tbody>
</table>

^aPrecipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System.

^bClimate Prediction Center Morphing Technique.

^cTropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis - Real Time.

^dClimate Hazards Group InfraRed Precipitation with Station data.

- **3 Hourly to Daily Conversion**
 Roy et al. 2016
Linear Method Equation

\[P_{\text{cor},m,d} = P_{\text{raw},m,d} \times \frac{\mu(P_{\text{obs},m})}{\mu(P_{\text{raw},m})}, \]

where \(P_{\text{cor},m,d} \) is corrected precipitation at given month \(m \) on \(d \)th day.
\(P_{\text{raw},m,d} \) is satellite precipitation at given month \(m \) on \(d \)th day. \(\mu(P_{\text{obs},m}) \) mean value of CHIRPS precipitation at given month \(m \) and \(\mu(P_{\text{raw},m}) \) mean value of satellite precipitation at given month \(m \)
Linear Method: Mean Calculation

• For entire time period, we will get 12 different mean values for each month; for example from 2005 to 2012, we will get 12 mean precipitation raster/matrix for Jan-Dec.

• Each cell will have 12 mean values for each month. If CHIRPS raster is 30x60; for each month, we have to calculate a 30x60 raster.

• We will have 12 raster files for each SPP. Extent and pixel size should be same as CHIRPS.

• Final output would be 30x60 raster
Correction of Extracting Gauge Station Information Area for the River Basin:

```r
# step 1: extracting cell information for observed value comparison
library(raster)
library(rgeos)

## rgeos version: 0.3-5, (SVN revision 447)
## GGOS runtime version: 3.4.2-CAPI-1.8.2 r3921
## Polygon checking: TRUE

gclip <- function(shp, bb) {
  if(class(bb) == "matrix") b_poly <- as(extent(as.vector(t(bb))), "SpatialPolygons")
  else b_poly <- as(extent(bb), "SpatialPolygons")
  intersection(shp, b_poly, byid = TRUE)
}

inputfolder_co <- paste("Linear_method/")
NCDC_co_ordinate <- read.csv(paste(inputfolder_co, "Bramputra_NCDC_co_ordinates.csv", sep = ""))
NCDC_co <- NCDC_co_ordinate[2:1]
NCDC_co <- as.matrix(NCDC_co)
```
Area Extent and Time Extent

```r
Year <- c("2015")
Basin <- c("Brahmaputra")
## "Ganges", "Indus", "Meghna")

inputfolder <- paste(Years, "/chirps-v2.0", sep = ")
if(!file.exists(inputfolder)) dir.create(inputfolder)

# first days of years
date1 <- seq(as.Date("2015-1-1"), as.Date("2015-12-31"), "days")
date_seq <- gsub("-", ":", date1)
head(date_seq)

date_seq <- as.matrix(date_seq)
no_days <- length(date_seq)
```
Step 2: Extracting cell information for observed value comparison

crop_folder <- paste("chirps/test/Brahmaputra/chirps/cropped_chirps/", Year[y], ",", sep="""")
if (!file.exists(crop_folder)) dir.create(crop_folder)
crop_chirps_file <- paste(crop_folder, date_seq[d], ",".tif", sep="""")
writeRaster(chirps_global_crop, filename=crop_chirps_file, format="GTiff", overwrite=TRUE)

NCDC_point <- matrix(0,1,2)
NCDC_point[,1] <- as.numeric(NCDC_co[p,3])
NCDC_point[,2] <- as.numeric(NCDC_co[p,2])

st_chirps[2:4] <- data.frame(coordinates(NCDC_co), extract(chirps_global_crop, NCDC_co))
Step 3: Mean Monthly Component for CHIRPS and Gauge Data

```r
for (m in 1:length(mon)) {
  myList <- list()

  for (y in 1:length(Year)) {

    inputfolder <- paste("C:/chirps/test/Brahmaputra/chirps_obs_daily_comparison/", Year[y], sep = "")
    setwd(inputfolder)

    files <- list.files(path = ".", pattern = paste(Year[y], ".", sprintf("%02d", mon[m]), ".", sep = "")) #path=inputfolder,
    for (i in files) { myList[[length(myList)+1]] <- as.matrix(read.csv(i)) }

  }

  MonthlyMean <- Reduce("+", myList)/length(myList)
  mean_monthly <- as.data.frame(MonthlyMean)
  mean_monthly$Ratio <- mean_monthly$obs_prcp/mean_monthly$chirps_prcp

  mean_monthly_garbage_removal <- mean_monthly[!is.infinite(mean_monthly$Ratio),]
  mean_monthly_final <- mean_monthly_garbage_removal[!is.na(mean_monthly_garbage_removal$Ratio),]
```
for (y in 1:length(year)) {
 for (m in 1:length(mon)) {
 inputfolder_chirps <- paste("C:/chirps/test/Brahmaputra/chirps/cropped_chirps/", Year[y], "/", sep = "")
 setwd(inputfolder_chirps)

 files_chirps <- list.files(path=".", pattern = paste(Year[y], ".", sprintf("%02d", mon[m]), ".", sep="")) # path-inputfolder_chirps

 for (i in files_chirps) {
 require(raster)
 directory <- paste(inputfolder_chirps, i, sep = "")
 chirps_daily <- as.matrix(raster(directory))

 monthly_factor <- as.numeric(lapply(paste(mon[m], "monthly_obs_bias_factor", sep = "_")
 corrected_chirps <- data.matrix(chirps_daily * monthly_factor, rownames.force = T)
 }
 }
}
Corrected CHIRPS and SPP: Mean Monthly Matrix
SPP Correction

```r
monthly_chirps_factor <- raster(paste("C:/chirps/test/Brahmaputra/", "corrected_chirps", ",", mon[m], ",_corrected_chirps_m")),
monthly_spp_factor <- raster(paste("C:/chirps/test/Brahmaputra/", "persian", ",", mon[m], ",_persian_monthly_bias_factor.tif")

monthly_bias_factor <- overlay(monthly_chirps_factor, monthly_spp_factor, fun=function(x, y){ x/y })

corrected_spp <- overlay(spp_daily, monthly_bias_factor, fun=function(x, y){ x*y })
```
Quantile Mapping

• Satellite and CHIRPS data covering the same period of record are used to create a "quantile map" of each population
• Gamma Probability Density Function (Gamma-PDF) is considered for precipitation distribution
• The Gamma-PDF is fitted for CHIRPS and satellite products at every grid-point and for all 12 months separately
• The Gamma Cumulative Distribution Function (Gamma-CDF) is used for determining probability associated with precipitation
Quantile Mapping

a) The Gamma Probability Density Function (Gamma-PDF) is applied assuming different shapes (k parameter) for each dataset.
b) The respective Gamma Cumulative Distribution Function (Gamma-CDF) for CHIRPS and SPPs is matched for a Probability (P=0.7) using the Inverse Gamma Function, which is finally used to calculate the bias-corrected daily satellite precipitation estimates.

From Valdés-Pineda et al. (2016), Open Access Article in Hydrology and Earth System Sciences Discussions
Loading Corrected CHIRPS and SPPs

```r
for (p in 1:length(mon)){
  myList <- list()
  counter<-0
  counter2<-0
  for (y in 1:length(years)) {
    # Loading CHIRPS and SPP
    ObsInputfolder<- paste("C:/chirps/quantile/Brahmaputra/chirps/",years[y],"/",sep = "")
    SatInputfolder<- paste("C:/chirps/quantile/Brahmaputra/persian/",years[y],"/",sep = "")
    files_chirps <- list.files(path=ObsInputfolder,pattern = paste("2015",".",sprintf("%02d", mon[p]),".*",sep="")) # path=
    files_sat <- list.files(path=SatInputfolder,pattern = paste("2015",".",sprintf("%02d", mon[p]),".*",sep="")) # path=inp
    for(i in files_chirps) {
      counter<-counter+1
      print(counter)
      ObsDirectory<- paste(ObsInputfolder,i,sep = "")
      if (counter==1){
        ...
# Making 3-D Matrix for Each Month Considering All Years
#

```r
Making 3-D Matrix for Each Month Considering All Years

dim(chirps) <- c(dim(raster(SatDirectory))[1], dim(raster(SatDirectory))[2], counter) # 3-D array formation

dim(chirps) <- c(dim(raster(SatDirectory))[1], dim(raster(SatDirectory))[2], length(files_chirps)) # converting it to
Drizzle <- 1 # less than 1 mm rain is considered drizzle
chirps[which(chirps < Drizzle)] <- 0

chirps

dim(sat_prcp) <- c(dim(raster(paste(SatInputfolder, j, sep = "")))[1], dim(raster(paste(SatInputfolder, j, sep = "")))[2],
Drizzle <- 1 # less than 1 mm rain is considered drizzle
sat_prcp[which(sat_prcp < Drizzle)] <- 0

CHIRPS <- array(3:63, dim = c(3, 4, 5))

z <- array(1:60, dim = c(3, 4, 5))
z[1, 1, 1] <- 0 # for testing

GammaCDF <- array(0, dim = c(3, 4, 5)) # for storing bias corrected data
BCz <- array(0, dim = c(3, 4, 5)) # for storing bias corrected data

GammaCDF_chirps <- array(0, dim = c(dim(raster(ObsDirectory))[1], dim(raster(ObsDirectory))[2], counter))
GammaCDF_sat <- array(0, dim = c(dim(raster(SatDirectory))[1], dim(raster(SatDirectory))[2], counter)) # for storing bias corrected data
```
Parameter Identification of Gamma-PDF and Quantile Estimation

```R
if (length(IndexNonZeroCHIRPS) > 4 & length(IndexNonZeroSat) > 4 & length(unique(NonZeroCHIRPS)) > 4 & length(unique(NonZeroSat)) > 4) {
 CHIRPSParmsLambda[i,j] <- fitdistr(CHIRPS[i,j], "gamma")$estimate[1] # lambda OR SHAPE
 CHIRPSParmsTheta[i,j] <- fitdistr(CHIRPS[i,j], "gamma")$estimate[2] # theta or rate
 CHIRPSParmsLambda[m,n] <- fitdistr(NonZeroCHIRPS, "gamma")$estimate[1] # lambda OR SHAPE
 CHIRPSParmsTheta[m,n] <- fitdistr(NonZeroCHIRPS, "gamma")$estimate[2] # theta or rate

 GammaParmsLambda[i,j] <- fitdistr(z[i,j], "gamma")$estimate[1] # lambda
 GammaParmsTheta[i,j] <- fitdistr(z[i,j], "gamma")$estimate[2] # theta
 GammaParmsLambda[m,n] <- fitdistr(NonZeroSat, "gamma")$estimate[1] # lambda
 GammaParmsTheta[m,n] <- fitdistr(NonZeroSat, "gamma")$estimate[2] # theta

 GammaCDF[i,j] <- pgamma(z[i,j], GammaParmsLambda[i,j], rate = GammaParmsTheta[i,j], log = FALSE)
 NonZeroGammaCDF <- pgamma(NonZeroSat, GammaParmsLambda[m,n], rate = GammaParmsTheta[m,n], log = FALSE)
 print(NonZeroGammaCDF)

 RCz[i,j] <- qgamma(GammaCDF[i,j], CHIRPSParmsLambda[i,j], CHIRPSParmsTheta[i,j])
 GammaCDF_sat[m,n,IndexNonZeroSat] <- qgamma(NonZeroGammaCDF, CHIRPSParmsLambda[m,n], CHIRPSParmsTheta[m,n]) # inverse
}
```
Acknowledgement:

• Professor Juan Valdes and members of his research group
• Emily, Africa and Lee