Life Science Research on the International Space Station

Honglu Wu
NASA Johnson Space Center
Houston, Texas, USA
Micro-7 experiment flight schedule

4/18/14 – Cells were launched to ISS on board SpaceX-3.

4/22/14 – Cells were transferred to a 37 C incubator.

4/25/14 – Cells were fixed with RNAlater II and PFA (Day 3).

4/25/14 – Cells were treated with bleomycin (1 μg/ml) (Day 3).

5/6/14 – Cells were fixed with RNAlater II and PFA (Day 14).

5/20/14 – The fixed samples returned to JSC.
Confluent human fibroblast cells were cultured in BioCells. The cells were kept in CGBA on ISS at 37 C.
Acknowledgements

NASA Fundamental Space Biology Program

NASA Johnson Space Center
Ye Zhang
Alan Feiveson
Michael Wong
Ramona Gaza
Thomas Marshburn

UHCL
Tao Lu
Larry Rohde

BioServe Space Technologies
Louis Stodieck
Stefanie Countryman
Jonathan Beno
Shankini Doraisingam

Kennedy Space Center
Ashleigh D. Ruggles
Satyanand Narayan

UT Southwestern Medical Center
Michael Story
Xiaoyu Wang

NASA Ames Research Center
Fathi Karouia
Kevin Sato
Life sciences research at NASA

- Crew health
 - Bone loss
 - Muscle atrophy
 - Psychological stress
 - Radiation risks
 - Immune dysfunction
 - Others

Space radiation

Space Radiation Environment
(Courtesy of NASA)
Life sciences research at NASA

- Fundamental space biology
 - Adaptation of living organisms in space
 - Plants
 - Microorganisms
 - Reproduction
 - Others

- Astrobiology
 - Life in the universe
 - Life in extreme environment
 - Others
The ISS U.S. National laboratory is a functioning research laboratory with the tools and facilities to conduct experiments in space.
ISS onboard analysis capability

Plate reader (NanoRacks)

Flowcytometer

Sequencer
Ground based spaceflight analog (Bed rest)
Ground based spaceflight analog (Confined space)

Human Exploration Research Analog (HERA)

NASA Extreme Environment Mission Operations (NEEMO)
Ground based spaceflight analog (Microgravity)

Parabolic flight

Mouse hind limb suspension

Rotating wall vessel bioreactor
The **NASA Space Radiation Laboratory** provides a ground-based facility to study the effects/mechanisms of damage from space radiation exposure.
Oomics studies are essential in NASA life sciences research.
Aim #1. Investigate changes of miRNA and RNA expression in G1 human fibroblasts in space.

Aim #2. Investigate cellular responses to bleomycin-induced DNA damage in G1 human fibroblasts in space.

Aim #3. Detect the DNA damage in cells from direct exposure to space radiation.
A micro RNA (abbreviated miRNA) is a small non-coding RNA molecule (containing about 22 nucleotides) found in plants, animals and some viruses, that functions in RNA silencing and post-transcriptional regulation of gene expression.

Aim 1. Gene and microRNA expression profile changes in space

- Gene expressions were analyzed with microarray containing 47k probes
- miRNA expressions were analyzed with microRNA array containing 3k probes

4/18/14 – Cells were launched to ISS on board SpaceX-3.

4/22/14 – Cells were transferred to a 37 C incubator.

4/25/14 – Cells were fixed with RNAlater II and PFA (Day 3).

4/25/14 – Cells were treated with bleomycin (1 μg/ml) (Day 3).

5/6/14 – Cells were fixed with RNAlater II and PFA (Day 14).

5/20/14 – The fixed samples returned to JSC.
Human fibroblasts

- A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework (stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells of connective tissue in animals.

- Confluent fibroblasts are slow growing or non-proliferating (90% in G1 phase based on DNA content analysis), can stay healthy without medium change for a long time (30 days tested).

- Most of the cells that have been flown to space were proliferating cells. However, most cells in an adult divide slowly.

- The cell line (AG1522) has been investigated extensively for cellular and DNA damages by low- and high-LET radiation.

DNA damage in human fibroblast cells by γ rays, and Si and Fe ions. Desai et al. Rad. Res. 2005

Gene expressions in human renal cortical cells.
Hammond et al. Nature Medicine 1999
Cells proliferated faster in space on Day 3

Ki-67 staining
MICROARRAY RESULTS – DAY 3 AND DAY 14

Number of genes having significant expression changes in the flight samples in comparison to the ground controls on Day 3 and Day 14

Venn diagram

PCA Analysis

Heat map
Faster proliferation of cells in space is associated with activation of NF-κB which triggers a number of growth factors.
Genes and miRNA with altered expressions in space

NF-κB

- NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls transcription of DNA, cytokine production and cell survival.
- Involved in cellular responses to stimuli such as stress, free radicals, and radiation.
- Involved in inflammatory and innate immune response.
- Involved in cancer development.

Let-7

- The human let-7 family plays a role in development, stem cell biology, aging, and metabolism.
- Loss of let-7 expression is associated with the development of poorly differentiated, aggressive cancers.
- Radiation exposures up-regulate the expression of Let-7 miRNA.
- Let-7 significantly impacts the radiation response in mammalian cells.
Summary of RNA and miRNA expressions

- Spaceflight has effects on gene and miRNA expressions only in proliferating human fibroblasts, but not on the resting cells.

- Human fibroblasts proliferate faster in space than on the ground, which is related to the activation of the NF-κB pathways.

T cell activation is inhibited by microgravity, but no gene expression changes were reported in the non-activated cells in space (Chang … Hughes-Fulford et al. 2012)
Conclusions

- Under stress, human fibroblast cells proliferate faster in order to stay. Such a process involves the NF-κB network.
Voyager 1
Radio telescope
Hubble space telescope
THANK YOU!
Curiosity rover